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Abstract Chaos synchronization of coupled fractional order differential equa-
tion is receiving increasing attention because of its potential applications in
secure communications and control processing. The aim of this paper is syn-
chronization between two identical or different delay fractional-order chaotic
systems in finite time. At first, the predictor-corrector method is used to ob-
tain the solutions of delay fractional differential equations in discrete times.
The mix synchronization problem is formulated as an optimization problem.
A modified version of particle swarm optimization (MPSO) method is used for
solving the problem. It is shown that the proposed method can be applied in
wide range of master-slave systems with commensurate or non-commensurate
fractional orders. Numerical simulations show the efficiency and robustness of
the proposed method.
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1 Introduction

The concept of a dynamical system has its origin in Newtonian mechanics.
Since the first chaotic model was found by Lorenz in 1963 [19], researchers
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have laid themselves out to construct new chaotic systems and analyze their
dynamical behaviors [20]. In this paper, a chaotic system is a deterministic
nonlinear dynamical system that possesses some complex dynamical behaviors,
such as extreme sensitivity to initial conditions. This means that two systems
starting trajectories from their arbitrary and almost the same initial states
could evolve in dramatically different fashions, and soon become uncorrelated
and unpredictable. Despite its complexity and unpredictability, chaos can be
controlled and two chaotic systems can be synchronized [1,21].

The fractional calculus started from some speculations of G.W. Leibniz
(1695, 1697) and L. Euler (1730), and it has been developed progressively up
to now. During the last few decades, fractional calculus has become a powerful
tool in describing the dynamics of complex systems which appear frequently
in several branches of science and engineering. Insofar as it concerns the ap-
plications of fractional derivatives, we can cite researches in different areas
such as viscoelastic damping, anomalous diffusion process, signal processing,
electrochemistry and fluid flow [7]. There are amount of efforts to discover
the chaos of fractional order systems. Specially, chaotic features have been
proofed in fractional order Lorenz system, fractional order Chua’s system,
fractional order Dung’s oscillator, fractional order Genesio-Tesi system and
fractional order Lotka-Volterra system [4]. Recent investigations in physics,
engineering, biological sciences and other fields have demonstrated that the
dynamics of many systems are described more accurately using fractional dif-
ferential equations with time delay [3,14]. Moreover, some Fractional-order
Delay Differential Equations (FDDE) have chaotic behaviors [26,29,30]. In re-
cent years, FDDE begin to arouse the attention of a number of researchers.
Recently, Pandey et. al., investigates approximation method for solving FDDE
[25]. Finite time stability analysis of FDDE is done by Li and Wang [15]. One
can find further subjects in this area in [23]. Synchronization, which means
”things occur at the same time or operate in unison”, has been a subject of
great interest and importance, in theory but also various fields of application,
such as secure communication [12] and neuroscience [24]. There exist some
various types of synchronization. Now, some basic definitions about synchro-
nization are given. Let x(t), y(t) and ‖.‖ denote dynamics of master system,
slave system and norm(usually the L2 norm) of a vector respectively.

Definition 1 The master-slave system (x(t), y(t)) is said to completely syn-
chronized in time τ if

‖x(t)− y(t)‖ = 0, t ∈ (τ,∞). (1)

Definition 2 The master-slave system (x(t), y(t)) is said to anti-synchronized
in time τ if

‖x(t) + y(t)‖ = 0, t ∈ (τ,∞). (2)

Definition 3 The master-slave system (x(t), y(t)) is said to reach η-lag syn-
chronization in time τ if

‖x(t)− y(t+ η)‖ = 0, t ∈ (τ,∞), (3)
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where η is given constant.

Many approaches have been presented for the control and synchronization
of chaotic systems such as impulsive control [28], fuzzy sliding mode con-
trol [16] and adaptive control [18]. Moreover, in the past few decades, several
intelligent optimization algorithms have been widely applied to control and
synchronization of chaotic systems, such as optimization strategy [31], differ-
ential evolution algorithm (DE) [17], particle swarm optimization (PSO) [5]
and artificial bee colony algorithm (ABC) [10]. Synchronization with using an
iteration algorithm is easy, fast and does not have complexity and difficulty
of analytical methods. In this method, first the synchronization problem is
transformed into an optimization problem and then it is solved with an in-
telligent optimization methods. However, many of them have the drawbacks
of premature convergence, low searching accuracy and iterative inefficiency.
Especially the problems involving multiple peak values fall into local optima
since the search space of the problem increases at each iteration. In this paper,
a modified version of PSO algorithm is used to overcome theses difficulties.
The remainder of this paper is organized as follows. In Section 2, fractional
derivatives and predictor-corrector scheme for solving FDDE are introduced.
In Section 3, the synchronization of two chaotic systems is explained. This
problem will be formulated as an optimization problem. Section 4 is devoted
to PSO algorithm. In this section some modifications on PSO algorithm are
proposed. The proposed method is applied on Logistic, Lorenz, Liu and Chen
systems. Numerical results are given in Section 5. In Section 6, a conclusion
is drawn.

2 Preliminaries

There are several definitions of fractional derivatives, such as Grunwald-Letnikov,
Riemann-Liouville, and Caputo definitions [14]. In this section, an introduction
of fractional derivatives will be given.

Definition 4 A real function f(t), t > 0 is said to be in space Cα, α ∈ ℜ
if there exists a real number p(> α), such that f(t) = tpf1(t) where f1(t) ∈
C [0,∞].

Definition 5 A real function f(t), t > 0 is said to be in space Cm
α ,m ∈ N∪{0}

if f (m)(t) ∈ Cα.

Definition 6 The Riemann-Liouville integral operator of order β is defined
as

Jβz(t) =
1

Γ (β)

∫ t

0

(t− τ)β−1z(τ)dτ, (4)

where Γ (.) is the gamma function.
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Definition 7 The Riemann-Liouville fractional derivative of y(t), y(t) ∈ Cm
−1,

m ∈ N ∪ {0}, is defined as

LD
αy(t) = D(m)(Jm−α)y(t) =

1

Γ (m− α)
(
d

dx
)n
∫ t

0

(t− τ)n−α−1y(τ)dτ, (5)

where α > 0, m− 1 < α < m (m ∈ N), D(m) is the ordinary mth derivative
of y, J is the Riemann-Liouville integral operator.

Definition 8 The Caputo fractional derivative of y(t), y(t) ∈ Cm
−1, m ∈ N ∪

{0}, is defined as

Dαy(t) = Jm−αy(m)(t) =
1

Γ (m− α)

∫ t

0

(t− τ)m−α−1y(m)(τ)dτ, (6)

where α > 0, m− 1 < α < m (m ∈ N), y(m) is the ordinary mth derivative of
y, J is the Riemann-Liouville integral operator.

Notice in many physical systems, system components are forced into some
configurations, or initialized. Fractional order components, however, require a
more complete initialization, as they have an inherent time-varying memory
effect. We assume that fractional order integral is beginning at time t = 0.
Note that for m− 1 < α ≤ m (m ∈ N),

JαDαy(t) = y(t)−
m−1
∑

k=0

dky

dtk
(0)

tk

k!
, (7)

and for α → m, the Caputo derivative becomes a conventional mth derivative.
Based on the expression (6), it is recognized that the Caputo derivative has
a relationship with all of the function history information. However, the ordi-
nary derivative is only related to its nearby points. Thus, a model described
by fractional-order differential equations possesses memory. In addition, the
initial conditions of Caputo derivative differential equations take on the same
form as for integer-order ones, which have well understood features of physical
situations and more applications in real world problems. Moreover, Heymans
and Podlubny show that it is possible to attribute physical meaning to initial
conditions expressed in term of Riemann-Liouville fractional derivatives [11].
Caputo derivative and Riemann-Liouville derivative are connected with each
other by the following relation [8]

(Dαy)(t) = (LD
αy)(t)−

n−1
∑

k=0

y(k)(0)

Γ (k − α+ 1)
(t)k−α. (8)
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2.1 Predictor-corrector scheme of fractional-order delayed equation

Predictor-corrector method is a numerical algorithm for solving ordinary dif-
ferential equations. Diethem et al. modified this algorithm for applying on
fractional differential equation [9]. Bhalekar and Daftardar-Gejji [2] improve
it to solve FDDE. Consider the following FDDE:

{

Dαy(t) = f(t, y(t), y(t− τ), y0), t ∈ [0, T ], 0 < α ≤ 1;

y(t) = g(t), t ∈ [−τ, 0]
(9)

where f is in general a nonlinear function. We consider the following uniform
grid

TN = {tn = nh : n = −k,−k + 1, · · · ,−1, 0, 1, · · · , N}, (10)

where k and N are integers such that h = T
N

= τ
k
. Let

yh(tj) = g(tj), j = −k,−k + 1, · · · ,−1, 0, (11)

and
yh(tj − τ) = yh(jh− kh) = yh(tj−k), j = 0, 1, · · · , N. (12)

It is assumed that the approximated solution

yh(tj) ≈ y(tj), j = −k,−k + 1, · · · ,−1, 0, 1, · · · , n,

is obtained and the value of yh(tn+1) should be calculated. If the operator
Jα
tn+1 is applied on the both sides of (6), we have

y(tn+1) = g(0) +
1

Γ (α)

∫ tn+1

0

(tn+1 − ξ)α−1

×f(ξ, y(ξ), y(ξ − τ))dξ. (13)

The approximations yh(tn) is used for y(tn) in (13). The trapezoidal quadra-
ture formula is used for approximating (13). Therefore,

yh(tn+1) = g(0) +
hα

Γ (α+ 2)
f(tn+1, y

p
h(tn+1), yh(tn+1−k)) +

hα

Γ (α+ 2)

×

n
∑

j=0

aj,n+1f(tj, yh(tj), yh(tj−k)), (14)

where

aj,n+1 =











nα+1 − (n− a)(n+ 1)α, j = 0;

(n− j + 2)α+1 + (n− j)α+1 − 2(n− j + 1)α+1, 1 ≤ j ≤ n;

1, j = n+ 1.

The predictor term y
p
h(tn+1) is calculated as follows

y
p
h(tn+1) =

1

Γ (α)
Σn

j=0bj,n+1f(tj , yh(tj), yh(tj−k)), (15)

where

bj,n+1 =
hα

α
((n+ 1− j)α − (n− j)α). (16)
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3 Problem formulation

Consider the following k-dimensional fractional-order chaotic delayed systems:
{

Dαy(t) = f(y(t), y(t− τ), y0) + u(t)

Dβx(t) = g(x(t), x(t − τ), x0),
(17)

where f and g are in general a nonlinear function of its arguments, Dα and Dβ

denote fractional derivatives of order α and β respectively and (α, β) ∈ (0, 1)2.
Let u(t) = (u1(t), u2(t), · · · , uk(t))

t be a local controller defined between initial
time t0 = 0 and given final time T . We suppose that two chaotic systems
(17) have different initial conditions (x0 6= y0). Our aim is synchronizing two
coupled chaotic systems (17) by applying a suitable control function u(t). We
assume that the control function uj is restricted to given constant values Aj

and Bj for j = 1, · · ·k. Therefore, the synchronization problem of system (17)
is formulated as follows

min ‖X(x(t))− Y (y(t))‖

s.t. Aj ≤ uj(t) ≤ Bj , t ∈ (0, T ), j = 1, · · · , k (18)

where X,Y are functions that declare type of synchronization and ‖.‖ denotes
the L2(0, T )-norm. The predictor-corrector method is used for solving (17).
We consider approximated solution of (17) in discrete times defined in (10).
Therefore, the optimization problem (18) can be presented as follows

min

(

N
∑

i=1

|X(x(ti)) − Y (y(ti))|
2

)

1
2

s.t. Aj ≤ uj(ti) ≤ Bj , i = 1, · · · , N, j = 1, · · · , k (19)

where | . | denotes the Euclid norm.

3.1 PSO and modification PSO

Particle swarm optimization (PSO) is a population based stochastic optimiza-
tion technique developed by R. C. Eberhart and J. Kennedy in 1995, inspired
by social behavior of bird flocking or fish schooling [13]. In PSO, candidate
solutions of a specific optimization problem are called particles. Suppose that
the search space is Ω-dimensional, each particle in the searching space is char-
acterized by two factors, i.e., position X0 = (xi1, xi2, · · · , xiΩ) and velocity
V0 = (vi1, vi2, · · · , viΩ), where i denote the ith particle in the swarm. The
fitness of each particle can be evaluated according to the objective function of
optimization problem. PSO starts with the random initialization of a swarm of
particles in the search space. Let pbesti(k) be the best position found by par-
ticle i within k iteration steps. Let gbest(k) denotes the best position within
k iteration steps for all particles. All particles update their velocities and po-
sitions based on their own experience pbesti(k) and experience of all particles
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gbest(k). The updating rules of velocity and position are given by (20) and
(21) respectively:

vk+1
i = wvki + c1r1(pbesti(k)− xk

i ) + c2r2(gbest(k)− xk
i ), i = 1, · · · , Ω, (20)

xk+1
i = xk

i + vk+1
i , i = 1, · · · , Ω, (21)

where Ω is the swarm size, vki and xk
i represent the velocity and position of

particle i at kth iteration step, respectively. r1 and r2 are two independent
random numbers in the range of [0, 1], c1 and c2 are acceleration constants,
usually c1 = c2 = 2.0. The parameter w is called the inertia weight factor. Gen-
erally, the value of each component in vi can be limited to a range [vmin, vmax]
to control excessive roaming of particles outside the searching space. With (20)
and (21), all particles in the swarm find their new positions and apply these
new positions to update their individual best positions and global best po-
sition of the swarm. This process is repeated until a user-defined stopping
criterion, usually maximum iteration number tmax is reached. Since the PSO
is easy to implement and has various application areas, many researchers have
conducted studies about it. For more details one can consult the references [6,
13].

3.2 Modification of PSO

The suitable velocity of particles is the most important factor in accuracy and
convergence speed of PSO algorithm. High velocity causes wander particles
and low velocity leads bars particles to move off global optimum points. PSO
suffers from premature convergence which results in a low optimization preci-
sion or even failure when it is applied on high-dimensional problems. It should
be noticed that high velocity leads to global search at initial iterations. Thus
one does not fall to local optimal solutions. On the other hand, low velocity
leads to more accurate solutions at eventual steps. Therefore, we consider high
velocity in initial iteration and decrease velocity in any iteration until it ap-
proximately equal to zero in final iteration step. By considering relation (20)
and (21), it is obvious that velocity of particle in each iteration depends on
inertia weight. Yaun and et al consider the constant inertia weight as 0.7 [29].
Moreover Tripathi et al. [27] consider the inertia weight in the following form:

wk =

(

(w1 − w2)
D − k

D

)

+ w2; (22)

Where D is number of iteration, k is the number of current iteration and w1, w2

are given constants. Based on some numerical simulations, we believe that the
following inertia weight is more appropriate in synchronization problem.

w = 0.7(1−
k − 1

D
); (23)
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Fig. 1: Portrait strange attractor of logistic system

4 Numerical results

In this section, we consider the synchronization problem of logistic, Chen, Liu
and Lorenz systems. We adopt modified PSO and D = 150 in Eq. (23).

4.1 Synchronization of delayed fractional-order logistic system

The fractional-order logistic delayed systems are rewritten by [30]:

{

LD
αx1(t) = −ax1(t) + rx1(t− τ) + u(t)

LD
αx2(t) = −ax2(t) + rx2(t− τ)

(24)

where a = 26, α = 0.9, r = −53, τ = 0.5 and u(t) is an unknown control
function. In the absence of control function, there exists a chaotic attractor
in system (24), as shown in Fig. 1. Consider initial conditions x1(t) = 0.5
and x2(t) = 0.9 for t ∈ [−τ, 0]. Let −50 ≤ u1(t) ≤ 50. We assume that the
time step and final time are h = 0.01 and T = 2 respectively. The estimated
result of synchronization is shown in Fig. ??. The calculated control function
is depicted in Fig. 3.
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Fig. 2: Synchronization portrait of logistic system.
The green circles shows the behavior of x1(t). The trend of x2(t) is depicted by red points.
The trend of x1(t) without control is shown by blue stars.
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4.2 Synchronization of fractional-order Chen system

The fractional-order Chen delayed system are rewritten by [29]:






































Dαx1(t) = a(y1(t)− x1(t− τ)) + u1(t)

Dαy1(t) = (c− a)x1(t− τ) − x1(t)z1(t) + cy1(t)) + u2(t)

Dαz1(t) = x1(t)y1(t)− bz1(t− τ) + u3(t)

Dαx2(t) = a(y2(t)− x2(t− τ))

Dαy2(t) = (c− a)x2(t− τ) − x2(t)z2(t) + cy2(t))

Dαz2(t) = x2(t)y2(t)− bz2(t− τ)

(25)
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where a = 35, b = 3, c = 27, a = 0.94, τ = 0.5 and u(t) = (u1(t), u2(t), u3(t)) is
an unknown control function. In the absence of control function, there exists a
chaotic attractor in system (25), as shown in Fig. 4. Consider initial conditions
x1(t) = 0, y1(t) = 0.5, z1(t) = 0.2, x2(t) = 0.2, y2(t) = 0, z2(t) = 0.5 for
t ∈ [−τ, 0] and −300 ≤ u1(t), u2(t), u3(t) ≤ 300. We assume that the time step
and final time are h = 0.001 and T = 0.3 respectively. The estimated result of
synchronization is shown in Fig. 5. The calculated control function is depicted
in Fig. 6.
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Fig. 4: Portrait strange attractor of Chen system

4.3 Synchronization of fractional-order Liu delayed system

The fractional-order Liu delayed systems are considered as follows [22,32]:







































Dαx1(t) = z1(t)− ax1(t) + x1(t)y1(t− τ) + u1(t)

Dαy1(t) = 1− by1(t)− x2
1(t− τ) + u2(t)

Dαz1(t) = −x1(t− τ)− cz1(t) + u3(t)

Dαx2(t) = z2(t)− ax2(t) + x2(t)y2(t− τ)

Dαy2(t) = 1− by2(t)− x2
2(t− τ)

Dαz2(t) = −x2(t− τ)− cz2(t)

(26)

where α = 0.92, a = 3, b = 0.1, c = 1, τ = 0.01 and u(t) = (u1(t), u2(t), u3(t))
is an unknown control function. In the absence of control function, there ex-
ists an chaotic attractors in system (26), as shown in Fig. 7. Consider initial
conditions x1(t) = 0.1, y1(t) = 4, z1(t) = 0.5, x2(t) = 2, y2(t) = 0, z2(t) = 0.7
for t ∈ [−τ, 0] in (26). We assume that −500 ≤ u1(t), u2(t), u3(t) ≤ 500 and
T = 0.04 is final time. The time step is considered as h = 0.002. The estimated
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Fig. 5: Synchronization portrait of Chen system (25).
(a): The green circles shows the behavior of x1(t). The trend of x2(t) is depicted by red
points. The trend of x1(t) without control is shown by blue stars.
(b) : The green circles shows the behavior of y1(t). The trend of y2(t) is depicted by red
points. The trend of y1(t) without control is shown by blue stars.
(c) : The green circles shows the behavior of z1(t). The trend of z2(t) is depicted by red
points. The trend of z1(t) without control is shown by blue stars.
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result of synchronization is shown in Fig. 8. The calculated control function is
depicted if Fig. 9.

4.4 Lag Synchronization of fractional-order Liu delayed system

Consider the fractional-order Liu delayed system (26) and consider (18) as
following:

min
7
∑

i=1

|x(ti)− y(ti+3)|+
N
∑

i=8

|x(ti)− y(ti−5)| (27)

s.t. Aj ≤ uj(ti) ≤ Bj , i = 1, · · · , N, j = 1, · · · , k

min
7
∑

i=1

|x(ti)− y(ti+3)|+
N
∑

i=8

|x(ti) + y(ti−5)| (28)

s.t. Aj ≤ uj(ti) ≤ Bj , i = 1, · · · , N, j = 1, · · · , k

where −500 ≤ uj(t) ≤ 500 and N = 20. The Results are shown in Fig. 10 and
Fig. 11.
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Fig. 8: Synchronization portrait of Liu system (26).
(a): The green circles shows the behavior of x1(t). The trend of x2(t) is depicted by red
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(c) : The green circles shows the behavior of z1(t). The trend of z2(t) is depicted by red
points. The trend of z1(t) without control is shown by blue stars.
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Fig. 9: Profile of optimal control function of Liu system calculated by MPSO
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Fig. 10: The trend of error function in lag synchronization of delayed fractional-order Liu
system defined in (27).
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Fig. 11: The trend of error function in lag synchronization of delayed fractional-order Liu
system defined in (28).

4.5 Synchronization of delayed fractional-order Chen system and Liu system

The fractional-order Chen delayed system and fractional-order Liu delayed
system are rewritten by















































LD
αx1(t) = a1(y1(t)− x1(t− τ1)) + u1(t)

LD
αy1(t) = (c1 − a1)x1(t− τ1)− x1(t)z1(t)

+c1y1(t) + u2(t)

LD
αz1(t) = x1(t)y1(t)− b1z1(t− τ1) + u3(t)

Dβx2(t) = z2(t)− a2x2(t) + x2(t)y2(t− τ2)

Dβy2(t) = 1− b2y2(t)− x2
2(t− τ2)

Dβz2(t) = −x2(t− τ2)− c2z2(t)

(29)
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Fig. 12: Synchronization portrait of Liu system (26) and Chen system (29).
(a): The green circles shows the behavior of x1(t). The trend of x2(t) is depicted by red
points. The trend of x1(t) without control is shown by blue stars.
(b) : The green circles shows the behavior of y1(t). The trend of y2(t) is depicted by red
points. The trend of y1(t) without control is shown by blue stars.
(c) : The green circles shows the behavior of z1(t). The trend of z2(t) is depicted by red
points. The trend of z1(t) without control is shown by blue stars.

where a1 = 35, b1 = 3, c1 = 27, α = 0.94, τ1 = 0.5, β = 0.92, a2 = 3,
b2 = 0.1, c2 = 1, τ2 = 0.01 Consider initial conditions x1(t) = 0, y1(t) = 0.5,
z1(t) = 0.2, x2(t) = 0.2, y2(t) = 0, z2(t) = 0.5 for t ∈ [−τ2, 0] and −300 ≤
u1(t), u2(t), u3(t) ≤ 300. We assume that the time step and final time are
h = 0.001 and T = 0.02 respectively. The estimated result of synchronization
is shown in Fig. 12. The calculated control function is depicted in Fig. 13.
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Fig. 13: Profile of optimal control function in synchronization between Liu and Chen systems
calculated by MPSO

4.6 Synchronization of delayed fractional-order Lorenz system and Chen

The fractional-order Lorenz delayed system and fractional-order Chen delayed
system are considered as follows







































Dαx1(t) = −y1(t)− x1(t− τ) + u1(t)

Dβy1(t) = −x1(t)z1(t− τ) + u2(t)

Dγz1(t) = x1(t)y1(t− τ) +R+ u3(t)

LD
qx2(t) = a(y2(t)− x2(t− τ))

LD
qy2(t) = (c− a)x2(t− τ) − x2(t)z2(t) + cz2(t)

LD
qz2(t) = x2(t)y2(t)− bz2(t− τ)

(30)

where R = 3.4693, α = 0.8, β = 0.95, γ = 0.5, τ = 0.5, q = 0.94, a = 35, b = 3
and c = 27. In the absence of control function, there exist chaotic attractors
in systems (30), as shown in Fig. 4 and Fig. 14. Consider initial conditions
x1(t) = 0.2, y1(t) = 0, z1(t) = 0.5, x2(t) = 0.2, y2(t) = 0, z2(t) = 0.5
for t ∈ [−τ, 0]. Let −150 ≤ u1(t), u2(t), u3(t) ≤ 150. We assume that the
time step and final time are h = 0.1 and T = 35 respectively. The estimated
result of synchronization is shown in Fig. 15. The calculated control function
is depicted in Fig. 16.

5 Conclusion

We have studied chaos synchronization of coupled fractional delay differential
equations. The problem has been formulated as an infinite dimensional opti-
mization problem. The infinite dimensional optimization problem is reduced
to finite dimensional problem by discretizing the time interval. The modified
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Fig. 15: Synchronization portrait of Lorenz system and Chen.
(a): The green circles shows the behavior of x1(t). The trend of x2(t) is depicted by red
points. The trend of x1(t) without control is shown by blue stars.
(b) : The green circles shows the behavior of y1(t). The trend of y2(t) is depicted by red
points. The trend of y1(t) without control is shown by blue stars.
(c) : The green circles shows the behavior of z1(t). The trend of z2(t) is depicted by red
points. The trend of z1(t) without control is shown by blue stars.
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Fig. 16: Profile of optimal control function in synchronization between Lorenz and Chen
systems calculated by MPSO

Table 1: Comparison of complete synchronization error and norm of controller between PSO
and MPSO in Logistic, Chen, Lorenz and Liu systems

PSO MPSO

Complete synchronization Lorenz and Chen systems E 4.63606e− 05 2.55458e− 16
‖ U ‖ 6.07709 6.07709

Complete synchronization Lorenz and Chen systems E 5.32625e− 04 8.35580e− 14
‖ U ‖ 8.65976e+ 02 8.65983e+ 02

Complete synchronization Lorenz and Chen systems E 1.42721e− 04 1.25698e− 13
‖ U ‖ 2.96565e+ 02 2.96659e+ 02

Complete synchronization Lorenz and Chen systems E 3.12659e− 06 1.321656e − 19
‖ U ‖ 7.43265e+ 01 7.43265e+ 01

Complete synchronization Lorenz and Chen systems E 3.45469e− 06 3.67629e− 15
‖ U ‖ 4.66796e+ 02 4.66773e+ 02

PSO algorithm is applied for solving the optimization problem. A compari-
son between PSO and MPSO is shown in Table 1, where the norm of local
controller and the error of synchronization in N steps is defined as follow:

‖U‖ =

(

N
∑

i=1

(u1(ti)
2 + u2(ti)

2 + u3(ti)
2)

)

1
2

,

E =

(

N
∑

i=1

(

[x1(ti)− x2(ti)]
2 + [y1(ti)− y2(ti)]

2 + [z1(ti)− z2(ti)]
2
)

)

1
2

.

Simulation results show that the MPSO method is clearly more efficient than
PSO. Moreover, It is shown that the proposed method can be applied on
wide range commensurate or non-commensurate master-slave systems. For fur-
ther work, a suggested topic is applying MPSO for synchronization of coupled
fractional-order delayed systems with random noise.
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