1. V.T. Arasan, M. Wermuth, and B.S. Srinivas, Modeling of stratified urban tripdistribution, J. TranspEng, 122 (1996) 342-346.
2. M.M.M. Abdel-Aal, Calibrating a trip distribution gravity model stratified by the trip purposes for the city of Alexandria, Alexandria Engineering Journal, 53 (2014) 677-689.
3. M.J. Bruton, Introduction to Transportation Planning, UCL Press, London (1985).
4. B. Cakir, F. Altiparmak, and B. Dengiz, Multi-objective optimization of astochastic assembly line balancing: A hybrid simulated annealing algorithm, Computer & Industrial Engineering, 60 (2011) 376-384.
5. P. Czyzak, A. Jaszkiewicz, Pareto simulated annealing: A metaheuristic technique for multipleobjective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7 (1998) 34-47 .
6. L.N. Duffus, A.S. Alfa, and A.H. Soliman, The reliability of using the gravity model for forecasting trip distribution, Transportation, 14 (1987) 175-192.
7. M.M. El-Sherbiny, R.M. Alhamali, A hybrid particle swarm algorithm with artificial immune learning for solving the fixed charge transportation problem, Computers & Industrial Engineering, 64 (2013) 610-620.
8. A. Hallefjord, K. Jornsten, Gravity models with multiple objectives: theory and applications, Trans Res B., 20 (1986) 19-39.
9. S. Islam, S., Kumar Roy, A new fuzzy multi-objective programming: Entropy based geometric programming and its application of transportation problems, European Journal of Operational Research, 173 (2006) 387-404.
10. S. Kirkpatrick, C.D. Gellat, and M.P. Vecchi, Optimization by simulated annealing. Science, 220 (1983) 671-680.
11. M. Kompil, H.M. Celik, Modelling trip distribution with fuzzy and genetic fuzzy systems, Transportation Planning and Technology, 36(2) (2013) 170-200.
12. X. Li, Z. Qin, L. Yang, and K. Li, Entropy maximization model for the trip distribution problem with fuzzy and random parameters, Journal of Computational and Applied Mathematics, 235 (2011) 1906-1913.
13. K.S. Lin, D.A. Niemeier, Temporal disaggregation of travel demand for high resolution emissions inventories, Trans Res 3D, (1998) 375-387.
14. C. Murat, Sample size needed for calibrating trip distribution and behavior of the gravity model, Journal of Transport Geography, 18 (1994) 183-190.
15. S. Ortuzar, L.G. Willumsen, Modeling Transport, Wiley, New York (1994).
16. M.S. Sabbagh, H. Ghafari, and S.R. Mousavi, A new hybrid algorithm for the balanced transportation problem, Computers & Industrial Engineering, 82 (2015) 115-126.
17. Salminen. S. Trafic accidents during work and work commuting, Int J IndErgon 26,75-85 (2000)
18. T. Thomas, S.I.A. Tutert, An empirical model for trip distribution of commuters in The Netherlands: transferability in time and space reconsidered, Journal of Transport Geography, 26 (2013) 158-165.
19. A.G. Wilson, Entropy in urban and regional modeling, Poin, England (1970).
20. A. Zaretalab, V. Hajipour, M. Sharifi, and M.R. Shahriari, A knowledge-based archive multi-objective simulated annealingalgorithm to optimize series parallel system with choice of redundancy strategies. Computers & Industrial Engineering, 80 (2015) 33-44.
21. Z. Zhou, A. Chen, S.C. Wong, Alternative formulations of a combined trip generation, trip distribution, modal split and trip assignment model, European Journal of Operational Research, 198 (2009) 129-138.