Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems

Authors

1 Department of Applied Mathematics, Damghan University, Damghan, Iran.

2 Department of Applied Mathematics, Damghan University

Abstract

Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization
between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions of delay fractional differential equations in discrete times. The mix synchronization problem is formulated as an optimization problem. A modified version of particle swarm optimization (MPSO) method is used for solving the problem. It is shown that the proposed method can be applied in wide range of master-slave systems with commensurate or non-commensurate fractional orders. Numerical simulations show the efficiency and robustness of
the proposed method.

Keywords


1. M.M. Asheghan, S.S. Delshad, M.T.H. Beheshti, M.S. Tavazoei, Non-fragile control and synchronization of a new fractional order chaotic system, Appl. Math. Comput., 222, 712–721 (2013).
2. S. Bhalekar, V. Daftardar-Gejji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Calc. Appl., 5, 1–9 (2011).
3. S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, R. Magin, Generalized fractional order Bloch equation with extended delay, Int. J. Bifurcation and Chaos, 22, 1250071 (2010).
4. R. Caponetto, G. Dongola, L. Fortuna, Fractional order systems: Modeling and control application, World Scientific, Singapore (2010).
5. W.D. Chang, PID control for chaotic synchronization using particle swarm optimization, Chaos Solitons Fract., 39, 910–917 (2009).
6. M. Clerc, Particle Swarm Optimization, Wiley, New York (2010).
7. L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54, 3413–3442 (2003).
8. k. Diethem, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin (2010).
9. K. Diethelm, N. Ford, A. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29, 3–22 (2002) .
10. W.F. Gao, S.Y. Liu, F. Jiang, An improved artificial bee colony algorithm for directing orbits of chaotic systems, Appl. Math. Comput., 218, 3868–3879 (2011).
11. N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differintial equations with Riemann Liouville fractional derivatives, J. Rheologica Acta, 37, 1–7 (2005).
12. M.Z.D. Hoz, L. Aco, Y. Vidal, M.S. Tavazoei, A modified Chua chaotic oscillator and its application to secure communications, Appl. Math. Comput., 247, 712–722 (2014).
13. J. Kennedy, R.C. Eberhart, Y.H. Shi, Swarm Intelligence, Morgan Kaufman, San Francisco (2001).
14. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam (2013).
15. M. Li, J. Wang, Finite time stability of fractional delay differential equations, Appl. Math. Lett., 64, 170–176 (2017).
16. T.C. Lin, M.C. Chen, M. Roopaei, Synchronization of uncertain chaotic systems based on adaptive type-2 fuzzy sliding mode control, Eng. Appl. Artif. Intell., 24, 39–49 (2011).
17. B. Liu, L.Wang, Y.H. Jin, D.X. Hunag, F. Tang, Control and synchronization of chaotic systems by differential evolution algorithm, Chaos Solitons Fract., 34, 412–419 (2007).
18. X. Liu, L. Hong, Chaos and adaptive synchronizations in fractional-order chaotic systems, Int. J. Bifurcation and Chaos, 11, 1350175 (2013).
19. E.N. Lorenz, Deterministic nonperiodic flow, J. Atm. Sci., 20, 130–141 (1963).
20. J. Ma, F. Wu, G. Ren, J. Tang, A class of initial-dependent dynamical systems, Appl. Math. Comput., 298, 65–76 (2017).
21. R. Mart´ınez-Guerra, A.C. P´erez-Pinacho, G.C. G´omez-Cort´es, J.C. Cruz-Victoria, Synchronization of incommensurate fractional order system, Appl. Math. Comput., 262, 260–266 ( 2015).
22. S. Miao, S.Q. Hua, W.F. Hao, Adaptive synchronization of the fractional-order L¨U hyperchaotic system with uncertain parameters and its circuit simulation, Journal of Uncertain Systems, 6, 11–19 (2012).
23. W. Mitkowski, J. Kacprzyk, J. Baranowski, Advances in the theory and applications of non-integer order systems, 5th Conference on Non-integer Order Calculus and Its Applications, Cracow, Poland (2013).
24. G. Orosz, Decomposing the dynamics of delayed Hodgkin-Huxley neurons, Lect. Notes. Math., 1, 343–357 (2014).
25. B.K. Pandey, N. Kumar, R.N. Mohaptra, An approximate method for solving fractional delay differential equations, Int. J. Appl. Comput. Math., 3, 1395–1405 (2017).
26. J. Tang, C. Zou, S. Wang, L. Zhao, P. Liu, Chaos synchronization of Chen systems with time varying delays, Int. J. Bifurcation and Chaos, 22, 1250183 (2012).
27. P.K. Tripathi, S. Bandyopadhyay, S.K. Pal, Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients, Inf. Sci., 177, 5033–5049 (2007).
28. T. Yang, L.O. Chua, Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication, Int. J. Bifurcation and Chaos, 7, 645–664 (1997).
29. L. Yuan, Q. Yang, C. Zeng, Chaos detection and parameter identification in fractionalorder chaotic systems with delay, Nonlinear Dyn, 73, 439-448 (2013).
30. D.P. Wang, J.B. Yu, Chaos in the fractional order logistic delay system, J. Electron. Sci. Technol. China, 6, 289–293 (2008).
31. L. Wang, L.L. Li, F. Tang, Directing orbits of chaotic systems using a hybrid optimization strategy., Phys. Lett. A., 324, 22–25 (2004).
32. S. Wang, Y. Yu, G. Wen, Hybrid projective synchronization of time-delayed fractional order chaotic systems, Nonlinear Anal-Hybri., 11, 129–138 (2014).