Derivations on Dual Triangular Banach Algebras

Document Type : Research Paper

Author

Department of mathematics, Ayatollah Borujerdi University, Borujerd, Iran

Abstract

Ideal Connes-amenability of dual Banach algebras was investigated in [17] by A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha. They studied weak∗continuous derivations from dual Banach algebras into their weak∗-closed two- sided ideals. This work considers weak∗-continuous derivations of dual triangular Banach algebras into their weak∗-closed two- sided ideals . We investigate when weak∗continuous derivations from these algebras into their weak∗-closed ideals are inner?

Keywords


  1. F.F. Bonsall and J. Duncan, Complete normed algebras, Springer–Verlag, Berlin (1973).
  2. H. G. Dales, Banach algebras and automatic continuity, London Math. Society Monographs, Vol. 24, Clarendon Press, Oxford (2000).
  3. M. Eshaghi Gordji and T. Yazdanpanah, Derivations into duals of ideals of Banach algebras, Proc. Indian Acad. Sci., 114(4), 399–403 (2004).
  4. M. Eshaghi Gordji, F. Habibian and Hayati, Ideal amenability of module extension of dual Banach algebras, Arc. Math. (Brno), 43, 177–184 (2007).
  5. M. Eshaghi Gordji, F. Habibian and A. Rejali, Module extension of dual Banach algebras, Bull. Korean Math. Soc., 47(4), 663–673 (2010).
  6. M. Eshaghi Gordji, A. Ebadian, F. Habibian and B. Hayati, Weak∗-continuous derivations in dual Banach algebras, Arc. Math. (Brno), 48, 39–44 (2012).
  7. B. E. Forrest and L.W. Marcoux, Derivations of triangular Banach algebras, Indiana Univ. Math. J., 45, 441–462 (1996).
  8. B. E. Forrest and L.W. Marcoux, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc., 354, 1435–1452 (2001).
  9. F. Ghahramani and R.J. Loy, Generalized notions of amenability, J. Funct. Anal., 208, 229–260 (2004).
  10. Y. Choi, F. Ghahramani and Y. Zhang, Approximate and pseudo-amenability of various classes of Banach algebras, J. Funct. Anal., 256, 3158–3191 (2009).
  11. B. E. Johnson, Cohomology in Banach algebras, Memoir American Math. Soc., 127 (1972).
  12. A. R. Medghalchi, M. H. Sattari and T. Yazdanpanah, Amenability and weak amenability of triangular Banach algebras, Bull. Iran. Math. Soc., 31(2), 57–69 (2005).
  13. V. Runde, Lectures on Amenability, Springer, New York (2002).
  14. S. Sakai, C*-algebras and W*-algebras, Springer (1971).
  15. Y. Zhang, Weak amenability of module extentions of Banach algebras, Trans. Amer. Math. Soc., 354(10), 4131–4151 (2002).
  16. Y. Zhang, 2m-weak amenability of group algebras, J. Math. Anal. Appl., 396, 412–416 (2012).
  17. A. Minapoor, A. Bodaghi, and D. Ebrahimi Bagha, Ideal Connes-amenability of dual Banach Algebras, Mediterr. J. Math. 14: 174. https://doi.org/10.1007/s00009-017-0970-2 (2017).
  18. A. Ebadian and A. Jabbari, Weak−continuous derivations on module extension of dual Banach algebras, South Asian Bulletin of Mathematics , 39, 347–363 (2015).