On Left φ-biflat and Left φ-biprojectivity of θ-lau Product Algebras

Document Type : Research Paper


1 Department of Mathematics, Faculty of Basic Sciences Ilam University P.O. Box 69315-516 Ilam, Iran.

2 Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran.


\textit{Monfared} defined $\theta$-Lau product structure $A\times_{\theta} B$ for two Banach algebras $A$ and $B$, where $\theta:B\rightarrow \mathbb{C} $ is a multiplicative linear functional. In this paper, we study the notion of left $\phi$-biflatness and left $\phi$-biprojectivity for the $\theta$ Lau product structure $A\times_{\theta} B$. For a locally compact group $G$, we show that $M(G)\times_{\theta}M(G)$ is left character biflat (left character biprojective) if and only if $G$ is discrete and amenable ($G$ is finite), respectively.
Also we prove that $\ell^{1}(\Bbb{N}_{\vee})\times_{\theta}\ell^{1}(\Bbb{N}_{\vee})$ is neither $(\phi_{\Bbb{N}_{\vee}}, \theta)$-biprojective nor $ (0, \phi_{\Bbb{N}_{\vee}})$-biprojective, where $\phi_{\Bbb{N}_{\vee}}$ is the augmentation character on $\ell^{1}(\Bbb{N}_{\vee}).$
Finally, we give an example among the Lau product structure of matrix algebras which is not left $\phi$-biflat.


  1. M. Alaghmandan, R. Nasr-Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras, Bull. Aust. Math. Soc. 82 (2010) 274-281.
  2. M. Askari-Sayah, A. Pourabbas and A. Sahami, Johnson pseudo-contractibility and pseudo-amenability of θ-Lau product, Krag. Jour. Math. 44 (2020) 593-601.
  3. Y. Choi, Triviality of the generalised Lau product associated to a Banach algebra homomorphism, Bull. Aust. Math. Soc. 94 (2016), 286-289.
  4. H. G. Dales, A. T. Lau and D. Strauss, Banach algebras on semigroups and their compactifications, Mem. Am. Math. Soc. 205 (2010), 1–165 .
  5. M. Dashti, R. Nasr-Isfahani and S. Soltani Renani, Character amenability of Lipschitz algebras, Canad. Math. Bull. 57 (1) (2014), 37–41.
  6. H. R. Ebrahimi Vishki and A. R. Khoddami, Biflatness and biprojectivity of Lau product of Banach algebras, Bull. Iran. Math. Soc. 39(3) (2013), 559-568.
  7. E. Ghaderi and A. Sahami φ−biflatness and φ−biprojectivity for θ-Lau product with applications U.P.B. Sci. Bull. Series A.(To appear).
  8. B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
  9. E. Kaniuth, A. T. Lau and J. Pym, On φ−amenability of Banach algebras, Math. Proc. Camb. Phil. Soc. 144 (2008) 85-96.
  10. A. T. Lau, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983) 161-175.
  11. M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Camb. Philos. Soc. 144 (2008) 697-706.
  12. M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math. 178 (2007) 277-294.
  13. R. Nasr-Isfahani and S. Soltani Renani, Character contractibility of Banach algebras and homological properties of Banach modules, Studia Math. 202 (3) (2011) 205-225.
  14. V. Runde, Lectures on amenability, Springer, New York, 2002.
  15. A. Sahami, M. Rostami and A. Pourabbas,On left φ-biflat Banach algebras, Comment. Math. Univ. Carolin. 61(3) 2020.
  16. A. Sahami, M. Rostami and A. Pourabbas, Left φ-biprojectivity of some Banach algebras, Preprint.
  17. A. Sahami, On left φ-biprojectivity and left φ-biflatness of certain Banach algebras, U.P.B. Sci. Bull. Series A. 81 (4) (2019) 97–106.