Conformity of Fractional Volterra Integro-Differential Equation Solution with an Integral Equation of Fractional Order

Document Type : Research Paper


Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University, P. O. Box 35195-363, Semnan, Iran.


For the feasibility of using analytical and numerical studies and findings on fractional integral equations for integro-differential of the fractional order, in this work, the equivalence of a fractional Volterra integro-differential equation of the Hammerstein type with a fractional integral equation is investigated in the Banach space. For this purpose, we use the mutual properties of the fractional order derivative and integral on each other.


  1. A. Aghajani, Y. Jalilian, J. J. Trujillo, On the existence of solutions of fractional integrodifferential equations, Fract. Calc. Appl. Anal., 15, 44–69 (2012).
  2. M. Akrami, G. Erjaee, Numerical solutions for fractional Black-Scholes option pricing equation, Global Analysis and Discrete Mathematics, 1, 9–14 (2016).
  3. R. Azimi, M. Mohagheghy Nezhad, S. Foadian, Shifted Legendre Tau method for solving the fractional stochastic integro-differential equations, Global Analysis and Discrete Mathematics, 6, 221–241 (2021).
  4. A. H. Bhrawy, E. H. Doha, D. Baleanu, S. S. Ezz-Eldien, A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion[1]wave equations, J. Comput. Phys., 293, 142–156 (2015).
  5. E. H. Doha, A. H. Bhrawy, D. Baleanu, R. M. Hafez, A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations, Appl. Numer. Math., 77, 43–54 (2014).
  6. A. Izadkhah, K. Nouri, A. Nikoobin, Proportional integral derivative control of fractional–order for a quarter–vehicle active suspension system, Romanian Journal of Physics, 65, 1–14 (2020).
  7. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).
  8. J. Klafter, S. C. Lim, R. Metzler, Fractional Dynamics in Physics: Recent Advances, World Scientific, Singapore (2011).
  9. R. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59, 1586–1593 (2010).
  10. R. Magin, M. Ortigueira, I. Podlubny, J. J. Trujillo, On the fractional signals and systems, Signal Process, 91, 350–371 (2011).
  11. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London (2010).
  12. F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear. Sci., 15, 939–945 (2010).
  13. K. Nouri, S. Elahi-Mehr, L. Torkzadeh, Investigation of the behavior of the fractional Bagley-Torvik and Basset equations via numerical inverse laplace transform, Romanian Reports in Physics, 68, 503–514 (2016).
  14. K. Nouri, M. Nazari, L. Torkzadeh, Numerical approximation of the system of fractional differential equations with delay and its applications, Eur. Phys. J. Plus, 135, Article ID 341 (2020).
  15. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1990).
  16. J. Sabatier, H. C. Nguyen, C. Farges, J. Y. Deletage, X. Moreau, F. Guillemard, B. Bavoux, Fractional models for thermal modeling and temperature estimation of a tran[1]sistor junction, Adv. Differ. Equ., 2011, Article ID 687363 (2011).
  17. V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer-Verlag, Berlin-Heidelberg (2010).