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Abstract The aim of this paper is to study the existence of infinitely many
solutions for discrete fourth-order boundary value problem with four param-
eters involving oscillatory behaviors of nonlinearity at infinity. The approach
is based on variational methods. In addition, one example is presented to il-
lustrate the feasibility and effectiveness of the main results.
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1 Introduction

Let T be a time scale, that is, a nonempty closed subset of R. In particular,
T = R and T = Z are examples of time scales corresponding to differential and
difference equations, respectively. Let T > 0 be fixed and suppose 0, T ∈ T.
The aim of this paper is to investigate the existence of infinitely many solutions
for the following second-order Sturm-Liouville type boundary value problem
on time scales: Let T > 2 be a positive integer and [2, T ]Z be the discrete
interval given by {2, 3, 4, . . . , T}. In this paper, we will examine a discrete
nonlinear fourth order boundary value problems (BVP) with four parameters
with intention of proving the existence of three solutions. The problem to be
studied can be viewed as a discrete version of the generalized beam equation.
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Consider the fourth BVP:{
∆4u(k − 2)− α∆2u(k − 1) + βu(k) = λf(k, u(k)), k ∈ [2, T ]Z,

u(1) = ∆u(0) = ∆u(T ) = ∆3u(0) = ∆3u(T − 1) = 0,
(P f

λ )

where ∆ denotes the forward difference operator defined by

∆u(k) = u(k + 1)− u(k), ∆i+1u(k) = ∆(∆iu(k)),

λ ≥ 0, f : [2, T ]Z × R → R is a continuous functions, and α and β are real
parameters and satisfy:

1 + (T − 1)Tα− + T (T − 1)3β− > 0, (1)

where
α− = min{α, 0},

and
β− = min{β, 0}.

Discrete boundary value problems have been intensively studied in the last
decade. The modeling of certain nonlinear problems from biological neural
networks, economics, optimal control and other areas of study have led to the
rapid development of the theory of difference equations; see [3,5,16,18] for an
overview on this subject.

Much interest has lately shown in fourth-order difference equations derived
from various discrete elastic beam problems. Many researches have investi-
gated into the existence and multiplicity of solutions for discrete fourth-order
boundary value problems through classical methods, including the fixed point
theory, the critical point theory, Krein–Rutman theorem, and the bifurca-
tion theory. For instance you can see [1,6–13,15,17,19,22] and the references
therein. For example, Graef et al. in [9] by applying some recent results from
mixed monotone operator theory, investigated uniqueness and dependence of
positive solutions on the parameters for the following nonlinear discrete fourth-
order Lidstone BVP{
∆4u(t− 2) + β∆2(t− 1) = λ [f(t, u(t), u(t)) + r(t, u(t))] , t ∈ [a+ 1, b− 1]Z,

u(a) = ∆2u(a− 1) = 0, u(b) = ∆2u(b− 1) = 0,

where
f : [a+ 1, b− 1]Z × [0,∞)× (0,∞) → [0,∞),

and
r : [a+ 1, b− 1]Z × [0,∞) → [0,∞),

are continuous functions. Ousbika and El Allali in [19] based on the critical
point theory, discussed the existence of at least two solutions for the following
discrete nonlinear fourth order boundary value problems with four parameters{
∆4u(k − 2)− α∆2u(k − 1) + βu(k) = λf(k, u(k)) + µg(k, u(k)), k ∈ [2, T ]Z,

u(1) = ∆u(0) = ∆u(T ) = ∆3u(0) = ∆3u(T − 1) = 0.
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In [12] by employing variational methods, the existence of at least three classi-
cal solutions for the problem (P f

λ ) was studied, also in [13] by using variational
methods, the existence of least one solution under an asymptotical behaviour
of the potential of the nonlinear term at zero for the problem (P f

λ ) was dis-
cussed.

Graef et al. in [9] by applying some recent results from mixed monotone
operator theory, obtained the existence, uniqueness and dependence of positive
solutions on the parameters for the following nonlinear discrete fourth-order
Lidstone BVP{
∆4u(t− 2)− β∆2u(t− 1) = λ[f(t, u(t), u(t)), r(t, u(t))], t ∈ [a+ 1, b− 1]Z,

u(a) = ∆2u(a− 1) = 0, u(b) = ∆2u(b− 1) = 0,

where
f : [a+ 1, b− 1]Z × [0,∞)× (0,∞) → [0,∞),

and
r : [a+ 1, b− 1]Z × [0,∞) → [0,∞),

are continuous functions. Heidarkhani et al. in [11], by using a consequence
of the local minimum theorem due Bonanno, studied the existence one solu-
tion and two solutions for the perturbed problem (P f

λ ). Unlike the mentioned
works, we look for for the existence of the infinitely many solutions for the
problem (P f

λ ) considering the oscillating behaviour condition of the nonlinear
term at infinity. We are also able to achieve a sequence of pairwise distinct
solutions which converges to zero for the problem by replacing the oscillating
behaviour condition at infinity, by a similar one at zero.

Motivated by the above works, in the present paper, employing a smooth
version of [2, Theorem 2.1], under an appropriate oscillating behaviour of the
nonlinear term f , we determine the exact collections of the parameter λ in
which the problem (P f

λ ), admits infinitely many solutions (Theorem 2). The
applicability of our results is illustrated by an example.

The present paper is arranged as follows. In Section 2 we recall some basic
definitions and preliminary results, while Section 3 is devoted to the existence
of multiple solutions for the eigenvalue problem (P f

λ ).

2 Preliminaries

In this section, we formulate our main results on the existence infinitely many
solutions for the problem (P f

λ ). Our main tool to ensure the results is a smooth
version of Theorem 2.1 of [2] which is a more precise version of Ricceri’s Vari-
ational Principle [20, Theorem 2.5] that we now recall here.

Theorem 1 Let X be a reflexive real Banach space, let Φ, Ψ : X −→ R be
two Gâteaux differentiable functionals such that Φ is sequentially weakly lower
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semicontinuous, strongly continuous, and coercive and Ψ is sequentially weakly
upper semicontinuous. For every r > infX Φ, let us put

φ(r) := inf
u∈Φ−1(−∞,r)

supu∈Φ−1(−∞,r) Ψ(u)− Ψ(u)

r − Φ(u)

and
θ := lim inf

r→+∞
φ(r), δ := lim inf

r→(infX Φ)+
φ(r).

Then, one has

(a) for every r > infX Φ and every λ ∈]0, 1
φ(r) [, the restriction of the functional

Iλ = Φ−λΨ to Φ−1(]−∞, r[) admits a global minimum, which is a critical
point (local minimum) of Iλ in X.

(b) If θ < +∞ then, for each λ ∈]0, 1
θ [, the following alternative holds: either

(b1) Iλ possesses a global minimum,
or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞ then, for each λ ∈]0, 1
δ [, the following alternative holds:

(c1) there is a global minimum of Φ which is a local minimum of Iλ,
(c2) there is a sequence of pairwise distinct critical points (local minima) of Iλ

which weakly converges to a global minimum of Φ.

We refer the interested reader to the paper [4,14] in which Theorem 1 has
been successfully employed to the existence of infinitely many solutions for
boundary value problems.

This section is devoted to introduce some basic notations and results which
will be used in the proofs of our main results. In this section, we will introduce
several basic definitions, notations, lemmas, and propositions used all over this
paper.

We define the real vector space E

E =
{
u : [0, T+2]Z → R, u(1) = ∆u(0) = ∆u(T ) = ∆3u(0) = ∆3u(T−1) = 0

}
,

which is a (T − 1)-dimentional Hilbert space, see [21] with the inner product

(u, v) =

k=T∑
k=2

u(k)v(k).

The associated norm is defined by

∥u∥ =

(
k=T∑
k=2

|u(k)|2
) 1

2

.



Infinitely Many Solutions for Discrete Fourth-Order . . . 121

Lemma 1 [19, Lemma 2.5] For any u, v ∈ E, we have

T∑
k=2

∆4u(k − 2)v(k) =

T+1∑
k=2

∆2u(k − 2)∆2v(k − 2),

T∑
k=2

∆u(k − 1)∆v(k − 1) = −
T∑

k=2

∆2u(k − 1)v(k).

We consider the functional as follows:

Φ(u) =
1

2

(
T+1∑
k=2

|∆2u(k − 1)|2 + α

T∑
k=2

|∆u(k − 1)|2 + β

T∑
k=2

|u(k)|2
)
, (2)

Ψ(u) =

T∑
k=1

F (k, u(k)), (3)

and

Iλ(u) = Φ(u)− λΨ(u),

for every u ∈ E.

Lemma 2 [19, Lemma 2.6] For any u ∈ E, we have

Φ(u) ≥ 0,

and

Φ(u) ≥ 1

2
ρ∥u∥2,

where

ρ =
(
1 + (T − 1)Tα− + T (T − 1)3β−

)
T−1(T − 1)3.

Lemma 3 [19, Lemma 2.7] If u ∈ E is a critical point of the functional I

then u is a solution of BVP (P f
λ ).

Put

F (k, t) :=

∫ t

0

f(k, ξ)dξ for all (k, t) ∈ [2, T ]Z × R.
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2.1 Main Result

In this section, we will state and prove our main results.
For convenience, put

A = lim inf
ξ→+∞

T∑
k=2

max
|t|≤ξ

F (k, t)

ξ2
,

B =
2

2 + α+ (T − 1)β
lim sup
ξ→+∞

∑T
k=2 F (k, ξ)

ξ2
,

λ1 =
1

B

and
λ2 =

ρ

2A
.

Theorem 2 Assume that
(A1) F (k, t) ≥ 0 for each (k, t) ∈ [2, T ]Z × [0,+∞);
(A2)

A <
ρ

2
B.

Then, for each λ ∈]λ1, λ2[, the problem (P f
λ ) has an unbounded sequence of

solutions in E.

Proof Our aim is to apply Theorem 1 to the problem (P f
λ ). Define the func-

tionals Φ and Ψ as given in (2) and (3), respectively. Let us prove that the
functionals Φ and Ψ satisfy the required conditions in Theorem 1. By lemma
2, we prove that Φ is coercive, sequentially weakly lower semicontinuous and
is bounded on each bounded subset of E. On the other hand, Φ is Gâteaux
differentiable and sequentially weakly lower semicontinuous and its Gâteaux
derivative is the functional Φ′(u) ∈ E∗, given by

Φ′(u)(v) =

T+1∑
k=2

∆2u(k − 2)∆2v(k − 2) + α

T∑
k=2

∆u(k − 1)∆2v(k − 1)

+ β

T∑
k=2

u(k)v(k),

for every u, v ∈ E. It is well known that Ψ is a differentiable functional whose
differential at the point u ∈ E is

Ψ ′(u)(v) =

T∑
k=2

f(k, u(k))v(k),

for any v ∈ E as well as it is sequentially weakly upper semicontinuous. We
show that Ψ ′ is compact. Suppose that un → u ∈ E then since f is continuous
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and from (3), we deduce that Ψ ′(un) → Ψ(un), thus Ψ ′ is compact. There-
fore, we observe that the regularity assumptions on Φ and Ψ , as requested in
Theorem 1, are verified.

Let {ξn} be a real sequence of positive numbers such that lim
n→+∞

ξn = +∞
and

A = lim
n→+∞

T∑
k=2

max
|t|≤ξn

F (k, t)

ξ2n
.

Put
rn =

ρ

2
ξ2n.

If u ∈ Φ−1(−∞, rn), then Φ(u) < rn. From the definition of rn, it follows that

Φ−1(−∞, rn) = {u ∈ E; Φ(u) < rn} ⊆ {u ∈ E; |u| ≤ ξn} .

Hence, we have

sup
u∈Φ−1(−∞,rn)

Ψ(u) ≤
T∑

k=2

max
|t|≤ξn

F (k, t).

Therefore, since 0 ∈ Φ−1(−∞, rn) and Φ(0) = Ψ(0) = 0, one has

φ(rn) ≤
supu∈Φ−1(−∞,rn) Ψ(u)

rn

=

∑T
k=2 max|t|≤ξn F (k, t)

rn

=
2

ρ

T∑
k=2

max
|t|≤ξn

F (k, t)

ξ2n

for all n ∈ N. Therefore, from assumption (A2), one has

θ ≤ lim inf
n→+∞

φ(rn) ≤
2

ρ
A < +∞.

Now, let {ηn} be positive real sequences and for all n ∈ N, and

lim
n→+∞

ηn = +∞.

Define wn(k) = ηn for all k ∈ [2, T ]Z. Clearly, wn ∈ E, from (2), we have

Φ(wn) =
1

2
(2 + α+ (T − 1)β) η2n. (4)

On the other hand, bearing the assumption (A1) in mind, from (3) one has

Ψ(wn) =

T∑
k=2

F (k, ηn).
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Then,

Iλ(wn) =Φ(wn)− λΨ(wn) ≤
1

2
(2 + α+ (T − 1)β) η2n − λ

T∑
k=2

F (k, ηn).

Now, consider the following cases.
If B < +∞, let ϵ ∈]0, B − 1

λ [. There exists νϵ such that

T∑
k=2

F (k, ηn) > (B − ϵ)
1

2
(2 + α+ (T − 1)β) η2n,

for all n > νϵ, and so

Iλ(wn) <
1

2
(2 + α+ (T − 1)β) η2n − λ

T∑
k=2

F (k, ηn)

=
1

2
(2 + α+ (T − 1)β) η2n(1− λ(B − ϵ)).

Since 1− λ(B − ϵ) < 0, and taking into account (4) one has

lim
n→+∞

Iλ(wn) = −∞.

If B = +∞, fix N > 1
λ . There exists νN such that

T∑
k=2

F (k, ηn) >
N

2
(2 + α+ (T − 1)β) η2n,

for all n > νN , and moreover,

Iλ(wn) <
1

2
(2 + α+ (T − 1)β) η2n(1− λN).

Since 1− λN < 0, and arguing as before, we have

lim
n→+∞

Iλ(wn) = −∞.

Taking into account that ] 1B , ρ
2A [⊂]0, 1

θ [ and that Iλ does not possess a global
minimum, from part (b) of Theorem 1, there exists an unbounded sequence
{un} of critical points which are the solutions of (P f

λ ). So, our conclusion is
achieved.

We present an example to illustrate Theorem 2.
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Example 1 Let T = 4. We consider the following problem{
∆4u(k − 2)−∆2u(k − 1) + u(k) = λf(u), k ∈ [2, 4]Z,

u(1) = ∆u(0) = ∆u(4) = ∆3u(0) = ∆3u(3) = 0,
(5)

where
f(ξ) = 2ξ + 20ξ cos2(

π

2
eξ)− 10πξ2eξ cos(

π

2
eξ) sin(

π

2
eξ),

for every ξ ∈ R. By the expression of f , we have

F (ξ) = ξ2
(
1 + 10 cos2(

π

2
eξ)
)
,

for every ξ ∈ R. Direct calculations give ρ = 64
5 . By simple calculations, we

see that
lim inf
ξ→+∞

sup|x|≤ξ F (x)

ξ2
= 1,

and
lim sup
ξ→+∞

F (ξ)

ξ2
= 11.

We clearly see that all assumptions of Theorem 2 are satisfied. Then, for
every λ ∈ ( 3

11 ,
32
5 ), the problem (5) admits a sequence of solutions which is

unbounded in

{u : [0, 6]Z → R, u(1) = ∆u(0) = ∆u(4) = ∆3u(0) = ∆3u(3) = 0}.

Remark 1 Under the conditions A = 0 and B = +∞, Theorem 2 concludes
that for every λ > 0, the problem (P f

λ ) admits infinitely many solutions in E.

Remark 2 Put λ̂1 = λ1 and

λ̂2 =
1

limn→+∞

∑T
k=2 max|t|≤cn F (k, t)−

∑T
k=2 F (k, bn)

ρ

2
c2n − 1

2
(2 + α+ (T − 1)β) b2n

.

We explicitly observe that the assumption (A2) in Theorem 2 could be replaced
by the following more general condition
(A3) there exist two sequence {cn} with {bn} for all n ∈ N and

bpn <
ρ

2 + α+ (T − 1)β
cpn,

for every n ∈ N and lim
n→+∞

cn = +∞ such that

lim
n→+∞

∑T
k=2 max|t|≤cn F (k, t)−

∫ σ(T )

0
F (t, bn)∆t

ρ

2
c2n − 1

2
(2 + α+ (T − 1)β) b2n

<
2

2 + α+ (T − 1)β
lim sup
n→+∞

∑T
k=2 F (k, ηn)

η2n
.
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Obviously, from (A3) we obtain (A2), by choosing bn = 0 for all n ∈ N.
Moreover, if we assume (A3) instead of (A2) and set

rn =
ρ

2
c2n,

for all n ∈ N, by the same arguing as inside in Theorem 2, we obtain

φ(rn) = inf
u∈Φ−1(−∞,rn)

(supu∈Φ−1(−∞,rn) Ψ(u))− Ψ(u)

rn − Φ(u)

≤
sup

u∈Φ−1(−∞,rn)

Ψ(u)− λΨ(wn)

rn − Φ(u)

≤
∑T

k=2 max|t|≤cn F (k, t)−
∑T

k=2 F (k, bn)

ρ

2
c2n − 1

2
(2 + α+ (T − 1)β) bpn

.

We have the same conclusion as in Theorem 2 with Λ replaced by Λ′ :=]λ̂2, λ̂2[.

Here we point out the following consequence of Theorem 2.

Corollary 1 Assume that (A1) holds and

(A4) lim infξ→+∞

∑T
k=2 max|t|≤ξ F (k, t)

ξ2
<

ρ

2
,

(A5) lim supξ→+∞

∑T
k=2 F (k, ξ)

ξ2
>

2 + α+ (T − 1)β

2
.

Then, the problem{
∆4u(k − 2)− α∆2u(k − 1) + βu(k) = f(k, u(k)), k ∈ [2, T ]Z,

u(1) = ∆u(0) = ∆u(T ) = ∆3u(0) = ∆3u(T − 1) = 0,
(P f

1 )

has an unbounded sequence of solutions in E.

In the same way as in the proof of Theorem 2 but using conclusion (c) of
Theorem 1 instead of (b), we will obtain the following result.

Theorem 3 Assume that all the hypotheses of Theorem 2 hold except for
Assumption (A2). Suppose that

(B1)

Ā <
ρ

2
B̄,

where

Ā = lim inf
ξ→0+

T∑
k=2

max
|t|≤ξ

F (k, t)

ξ2
,
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and

B̄ =
2

2 + α+ (T − 1)β
lim sup
ξ→0+

∑T
k=2 F (k, ξ)

ξ2
.

Then, for each λ ∈]λ3, λ4[ where

λ3 :=
1

B̄
,

and
λ4 :=

ρ

2Ā
,

the problem (P f
λ ) has a sequence of pairwise distinct solutions which strongly

converges to 0 in E.

Proof We take Φ and Ψ as in the proof of Theorem 2 and put

Iλ̄(u) = Φ(u)− λ̄Ψ(u),

for every u ∈ E. We verify that δ < +∞. For this, let {ξn} be a sequence of
positive numbers such that ξn → 0+ as n → +∞ and

lim
n→+∞

T∑
k=2

max
|t|≤ξn

F (k, t)

ξ2n
< +∞.

Put

Ā = lim
n→+∞

T∑
k=2

max
|t|≤ξn

F (k, t)

ξ2n
,

and
rn =

ρ

2
ξ2n,

for each n ∈ N. Therefore, from assumption (B1), one has

δ ≤ lim inf
n→+∞

φ(rn) ≤
2

ρ
Ā < +∞.

Let us show that the functional Iλ̄ does not have a local minimum at zero. For
this, let {ηn} be a sequence of positive such that ηn → 0+ as n → +∞. Put

B̄ =
2

2 + α+ (T − 1)β
lim

n→0+

∑T
k=2 F (k, ηn)

η2n
. (6)

Let {wn} be a sequence in E with wn(k) = ηn for all k ∈ [2, T ]Z. Moreover,
from the assumption (A1) we obtain

Ψ(wn) =

T∑
k=2

F (k, ηn).
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Then,

Iλ̄(wn) = Φ(wn)− λ̄Ψ(wn)

≤ 2 + α+ (T − 1)β

2
η2n − λ̄

T∑
k=2

F (k, ηn).

Consider the following cases.
If B̄ < +∞, let ε ∈]0, B̄ − 1

λ̄
[. By (6), there exists νε such that

T∑
k=2

F (k, ηn) > (B̄ − ε)
2 + α+ (T − 1)β

2
η2n,

for all n > νε, hence

Iλ(wn) <
2 + α+ (T − 1)β

2
η2n − λ̄(B̄ − ε)

T∑
k=2

F (k, ηn)

=
2 + α+ (T − 1)β

2
η2n(1− λ̄(B̄ − ε)).

Since 1− λ̄(B̄ − ε) < 0, and by considering (4), one has

lim
n→+∞

Iλ̄(wn) = 0.

If B̄ = +∞, fix N0 > 1
λ̄

. There exists νN0 such that

T∑
k=2

F (k, ηn) > N0
2 + α+ (T − 1)β

2
η2n,

for all n > νN0
, and moreover,

Iλ̄(wn) <
2 + α+ (T − 1)β

2
η2n(1− λ̄N0).

Since 1− λ̄N0 < 0, and as above, we can say

lim
n→+∞

Iλ̄(wn) = 0.

Since Iλ̄ = 0, this implies that the functional Iλ̄ does not have a local minimum
at zero. Hence, part (c) of Theorem 1 ensures that there exists a sequence {un}
in E of critical points of Iλ̄ such that ∥un∥ → 0 as n → ∞, and the proof is
complete.
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