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Abstract In this paper, we introduce a method for finding the integral of
symmetric multivariate function. We compute the number of nodes which the
method use them, and also by using the Gauss-Legendre integrating, we ob-
tain the approximate value the generalized symmetric function. Theoretical
consideration has been discussed and some examples were presented to show
the ability of the method for approximate value of integral of the symmetric
functions. In this numerical integration approach, for a symmetric function
that has the same calculations at a number of different node points, only cal-
culations are performed for a node and the result is multiplied by the number
of repetitions of similar cases. In addition to modulating errors due to rounding
and expanded error during calculations, much less memory is used than the
numerical integration method. Also in this approach, the time of numerical
integration is reduced and the numerical results confirm this.
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1 Introduction

In this paper we consider the following integral

I =

∫
[a,b]n

f(x1, x2, . . . , xn)dx1dx2 . . . dxn, (1)

which f : [a, b]n → ℜ is a multivariate integrable function, and a and b are
finite real number. It is difficult or impossible to find the value of integral (1)
analytically, and so we have to approximate it. k-points quadrature formula for
numerical integration are considered. Gaussian-Legendre quadrature is used
to develop a family of approximation formulas for the accurate numerical com-
putation of the many of integrals. Furthermore, symmetry properties related
to zeros of Legendre polynomials and weights are available [4,7]. In [11], Exact
Gaussian quadrature methods have been applied for near-singular integrals in
the boundary element method. In [2], estimates for the zeroes of the n−th Leg-
endre polynomial are numerically studied, and alternative Gaussian-Legendre
quadrature formula are considered.

There are many methods for finding the approximate value of (1), [10,12].
Let the following formula is a k-points quadrature formula for computing the
approximate of (1):

I ≃
k∑

i1=1

k∑
i2=1

· · ·
k∑

in=1

wi1,i2,··· ,inf(xi1 , xi2 , . . . , xin) (2)

that wi1,i2,··· ,in denote for wi1wi2 · · ·win and in the case n = 2 we have∫
[a,b]2

f(x, y)dxdy ≃
k∑

i=1

k∑
j=1

wi,jf(xi, xj). (3)

In the special case which f is symmetric, we can do this by fewer computa-
tions, because some points are iterative. Symmetric functions are important
in several branches of mathematics, especially in approximation theory, prob-
ability theory, combinatorics, algebra, integral equations, and they have many
applications in different areas [3,9].

This article is organized in this form. In section 2, the number of nodes
required to use the k-point Gaussian Legendre formula for multivariate sym-
metric functions is obtained, in order to avoid repeated calculations. Then
the corresponding formula is rewritten with the aim of reducing the amount
of calculations, errors and time. In section 3, numerical examples are solved
using the proposed method and the results are compared with the Gaussian-
Legendre method. Finally, in section 4, the results are stated.

2 Integral formula

Now, we define equivalence relation ∼: [a, b]n → [a, b]n.
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Definition 1 Two points (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are equivalent
and denote by (x1, x2, . . . , xn) ∼ (y1, y2, . . . , yn) if and only if there is a per-
mutation on {1, 2, . . . , n} such as σ such that

∀i = 1, 2, . . . , n : yi = xσ(i).

We denote the equivalence class of [a, b]n respect to ∼ by [a,b]n

∼ and its element
by (x1, x2, . . . , xn).

Definition 2 The multivariate function f : [a, b]n → ℜ is symmetric, if for
each (x1, x2, . . . , xn) ∈ [a, b]n and each permutation σ ∈ Sn,

f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)),

which Sn is a symmetric group of order n [1,3,8].

Definition 3 Let f is a symmetric multivariate function. We denote number
of nodes which the k-points quadrature formula (2) need them by Nn,k.

Lemma 1 Let f is a symmetric two variables function. We have

N2,k =

(
k + 1
2

)
Proof Clearly.

Theorem 1 For every k and n > 1 we have

Nn,k =

k∑
j=1

Nn−1,j (4)

Proof Using induction on n. By using N1,k = k and Lemma 1, the propo-
sition is correct for n = 2. Let 4 hold for up to n. If the first component of
(i1, i2, . . . , in) equal to (1) [6], then by using the hypothesis, the corresponding
permutations is Nn,k. Also, if the first component of (i1, i2, . . . , in) equal to i,
the corresponding permutations is Nn,k−i+1. So, the corresponding permuta-
tions for n+ 1 is

Nn,k +Nn,k−1 + · · ·+Nn,1 =

k∑
j=1

Nn,j

therefore, statement (4) holds for n+ 1.

Theorem 2 For every k and n > 1 we have

Nn,k =

(
n+ k − 1

n

)
(5)
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Table 1 Number of nodes required in n-point numerical integration formula, for symmetric
multivariate functions

k N1,k N2,k N3,k N4,k N5,k N6,k N7,k

1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8
3 3 6 10 15 21 28 36
4 4 10 20 35 56 84 120
5 5 15 35 70 126 210 330
...

...
...

...
...

...
...

...

Proof By using induction on n and using the following relation

k∑
j=1

(
n+ j − 1

n

)
=

(
n+ k
n+ 1

)
,

we can conclude (5).
By using Theorems 1 and 2, we can write the Table (1) for different n and k:

In Table 1, For k = 5 and n = 5, we have N5,5 = 126 points in symmetric
form, while in the classic quadrature, we need to 55 = 3125 points.

Definition 4 Let ni is the number of iterative of xi in (xi1 , xi2 , . . . , xin), we
define (

n
n1, n2, . . . , nn

)
=

n!

n1!n2! · · ·nn!

where n1 + n2 + · · ·+ nn = n [13].

By using above definition we can write∫
Cn(a,b)

f(x1, x2, . . . , xn)dx1dx2 · · · dxn

≃
k∑

i1=1

k∑
i2=i1+1

· · ·
k∑

in=in−1+1

(
n

n1, n2, . . . , nn

)
wi1,i2,··· ,inf(xi1 , xi2 , . . . , xin)

Definition 5 A function f is called generalized symmetric if f is symmetric
and for all x and y ∈ [−1, 1]:
i) f(x, x) = 0
ii) f(x,−y) = f(x, y)

Theorem 3 The Gauss-Legendre quadrature for generalized symmetric func-
tion f of two variables and k ≥ 2 are:
i) If we use 2k points we have∫ 1

−1

∫ 1

−1

f(x, y)dxdy ≃ 8

k∑
i=1

k∑
j=i+1

wi,jf(xi, xj)
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ii) If we use 2k + 1 points we have

∫ 1

−1

∫ 1

−1

f(x, y)dxdy ≃ 8

k∑
i=1

k∑
j=i+1

wi,jf(xi, xj) + 4

k∑
j=1

w0,jf(0, xj)

Proof for n = 2k since that the Legendre polynomial pn(x) is even function,
so if pn(x) = 0 then pn(−x) = 0 [14]. Zeros of p2k(x) on [−1, 1] and weights
are listed

−xk,−xk−1, . . . ,−x2,−x1, x1, x2, . . . , xk−1, xk

wk, wk−1, . . . , w2, w1, w1, w2, . . . , wk−1, wk

for generalized symmetric function f ,we have f(xi, xi) = 0 and

f(xi, xJ) = f(xi,−xJ) = f(−xi, xJ) = f(−xi,−xJ) = f(xJ , xi)

= f(xJ ,−xi) = f(−xJ , xi) = f(−xJ ,−xi).

So, the Gauss-Legendre quadrature for generalized symmetric function f of
two variables for 2k points is:

8

k∑
i=1

k∑
j=i+1

wi,jf(xi, xj).

Similarly to for n = 2k + 1 zeros of p2k+1(x) and weights the following are
listed

−xk,−xk−1, . . . ,−x2,−x1, 0, x1, x2, . . . , xk−1, xk

wk, wk−1, . . . , w2, w1, w0, w1, w2, . . . , wk−1, wk

but, f(0, xi) = f(0,−xi) = f(xi, 0) = f(−xi, 0). So, the Gauss-Legendre
quadrature for generalized symmetric function f of two variables for 2k + 1
points is:

8

k∑
i=1

k∑
j=i+1

wi,jf(xi, xj) + 4

k∑
j=1

w0,jf(0, xj).

3 Computation Results

In this section, the following two examples for numerical integration using the
Definitions and Theorems of the previous section and comparing the amount
of memory and time used, compared to the method of numerical integration
of Gaussian-Legendre were examined.
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Table 2 The approximate value obtained from the proposed method and Gaussian-Legendre
for Example 1, with different n.

n Gaussian-Legendre quadrature formula propsed method

4 1.136017156 1.136017156
5 1.240434694 1.240434694
6 1.248384751 1.248384752
7 1.279186715 1.279186714
8 1.285482627 1.285482628
9 1.298529611 1.298529610
10 1.302519696 1.302519696
11 1.307494901 1.309216805
12 1.311799291 1.311799290
13 1.315679426 1.315679431
14 1.317423410 1.317423414
15 1.318986118 1.319867674
16 1.321093554 1.321093557
17 1.322730782 1.322730782
18 1.323622627 1.323622631
19 1.324772046 1.324772048
20 1.325439990 1.325439989

Table 3 The amount of memory used the proposed method compared to the Gaussian-
Legendre method, for Example 1, with different n.

n memory used with memory used with
proposed method (KiB) Gaussian-Legendre quadrature (KiB)

4 2.73 15.56
5 4.16 20.94
6 4.37 31.64
7 6.79 39.68
8 6.80 52.23
9 10.20 69.49
10 10.70 85.54
11 14.23 100.14
12 14.79 119.73
13 19.90 141.22
14 20.12 164.65
15 24.66 180.16
16 26.55 220.10
17 31.69 233.58
18 33.21 273.34
19 39.44 294.89
20 41.42 340.40

Example 1 We Consider ∫ 1

−1

∫ 1

−1

|x2 − y2|dxdy.

The exact solution is 4
3 . Table 2, shows the obtained values by using Theorem

3, and n-points quadrature formula.
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Table 4 The time used in the proposed method compared to the Gaussian-Legendre
method, for Example 1, with different n.

n real time for real time for Gaussian-Legendre
proposed method (ms) quadrature (ms)

4 2 0
5 0 0
6 0 1
7 1 0
8 0 2
9 0 1
10 0 1
11 0 2
12 5 2
13 0 2
14 1 2
15 1 2
16 0 3
17 1 3
18 0 5
19 0 4
20 2 4

In Table 3, for different values   of n, the amount of memory required in
the introduced method is much smaller than the Gaussian-Legendre method.
Table 4, shows the amount of real time for the proposed method and the
Gaussian-Legendre method.

Example 2 Consider the following integration problem∫ 1

−1

∫ 1

−1

|cos(x)− cos(y)|
(1 + x2)(1 + y2)

dxdy. (6)

Using Maple software, the value of the above integral is 0.3471432304. In the
Table 5, for different values   of n and using Theorem 3, the approximate values
of the integral is given.

In Table 6, the amount of memory required by the proposed method is
much less compared to Gaussian-Legendre method. Table 7, shows the amount
of real time for Example 2 with the proposed method and the Gaussian-
Legendre method.

4 Conclusion

In this work, using the properties of symmetric functions and the Gaussian-
Legendre quadrator, the multivariate numerical integration formula was sim-
plified. In this quadrator, the computational volume is greatly reduced. The
Gauss-Legendre quadrature for generalized symmetric function of two vari-
ables was obtained and with numerical examples, the efficiency of this rule
was examined. Since, the integral of multivariate functions plays a critical
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Table 5 The approximate value obtained from the proposed method and Gaussian-
Legendre, for Example 2, with different n.

n Gaussian-Legendre quadrature formula propsed method

4 0.2719947831 0.2719947829
5 0.3262859197 0.3262859199
6 0.3197361154 0.3197361155
7 0.3324682055 0.3324682054
8 0.3324640169 0.3324640170
9 0.3373150893 0.3373150892
10 0.3378535141 0.3378535142
11 0.3400445547 0.3402280539
12 0.3407046302 0.3407046300
13 0.3420420997 0.3420420996
14 0.3424086464 0.3424086450
15 0.3431430365 0.3432347498
16 0.3435116943 0.3435116942
17 0.3440568769 0.3440568770
18 0.3442678775 0.3442678786
19 0.3446461533 0.3446461533
20 0.3448093436 0.3448093436

Table 6 The amount of memory used the proposed method compared to the Gaussian-
Legendre method, for Example 2, with different n.

n memory used with memory used with Gaussian-
proposed method (KiB) Legendre quadrature (KiB)

4 47.16 72.56
5 49.88 82.00
6 51.63 107.84
7 55.62 122.48
8 57.97 154.59
9 63.61 180.02
10 65.98 219.31
11 72.07 244.44
12 75.61 293.68
13 83.27 335.59
14 87.07 384.86
15 94.55 423.75
16 100.80 496.05
17 109.07 532.48
18 115.17 614.40
19 124.92 655.36
20 132.84 747.52

role in the cost function of the optimal control problem and in the integral
equations, methods based on numerical integration methods are of particular
importance because the values   of some integrals are not accurately calculated.
When the cost function in the optimal control or the kernel in the integral
equations are symmetric, we can use the results of this research to design a
numerical method with less and more efficient calculations to compute the
integral and finally for the main problem. This issue needs further research.



Numerical Integration of Symmetric Multivariate Function 159

Table 7 The time used in the proposed method compared to the Gaussian-Legendre
method, for Example 2, with different n.

n real time for real time for Gaussian-Legendre
proposed method (ms) quadrature (ms)

4 3 1
5 2 1
6 1 2
7 1 2
8 2 2
9 1 3
10 2 4
11 3 4
12 2 6
13 2 5
14 2 3
15 2 7
16 0 8
17 2 8
18 3 8
19 1 6
20 3 11

References

1. T. Trif, Multiple integrals of symmetric functions, Amer. Math. Monthly, 104, 605–608
(1997).

2. F. G. Lether, On the construction of Gauss-Legendre quadrature rules, J. Comput.
Appl. Math., 4, 47–52 (1978).

3. A. J. Jerri, Introduction to Integral Equations with Applications, John Wiley and Sons,
New York, (1999).

4. F. G. Lether, Gauss-Legendre approximations for the Hubbell rectangular-source inte-
gral, Journal of Computational and Applied Mathematics, 57, 393–402 (1995).

5. Y. Jinyun, symmetric Gaussian quadrature formulae for tetrahedronal regions, Com-
puter Methods in Applied Mechanics and Engineering, 43, 349–353 (1984).

6. B. J. Arnow, Representation of permutations,combinations and dihedral elements as
trees, Computers Math. Applie., 20, 63–67 (1990).

7. F. G. Lether, P. R. Wenston, Minimax approximations of the zeros of and Gauss-
Legendre quadrature, Journal of Computational and Applied Mathematics, 59, 245–252
(1995).

8. P. P. Alejandro, R. A. Bailey, P. J. Cameron, Association schemes and permutation
groups, Discrete Mathematics, 266, 47–67 (2003).

9. G. V. Milovanovic, A. s. Cvetkovic, Some inequalities for symmetric functions and an
application to orthogonal polynomials, J. Math. Anal. Appl., 311, 191–208 (2005).

10. G. M. Phillips, P. J. Taylor, Theory and applications of numerical analysis, Academic
Press, (1996).

11. E. Lutz, Exact Gaussian quadrature methods for near-singular integrals in the boundary
element method, Engineering Analysis with Boundary Elements, 9, 233–245 (1992).

12. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer, New York (2002).
13. S. Lipschutz, M. L. Lipson, Theory and Problems of discrete mathematics, MC Graw-

Hill Inc, New York (2007).
14. G. F. Simmons, Differential equations with applications and historical notes, Taylor &

Francis Inc, New York (2016).


