On Schur Multiplier of a Pair of Lie Algebras

Homayoon Arabyani

Received: 3 May 2022 / Accepted: 1 March 2023

Abstract Nilpotent Lie algebras have played an important role in mathematics in the classification theory of Lie algebras. Let (N, L) be a pair of finite dimensional Lie algebras. Let K be an ideal of L such that $L = N \oplus K$ and N be a filiform ideal of L. Also, let dim N = n and dim K = m. Then $s'(N,L) = \frac{1}{2}(n-1)(n-2) + 1 + (n-1)m - \dim \mathcal{M}(N,L)$. In this paper, we characterize the pair (N,L) for $s'(N,L) = 0, 1, 2, \ldots, 15$.

Keywords Filiform Lie algebras · Pair of Lie algebras · Schur multiplier

Mathematics Subject Classification (2010) 17B30 · 17B99

1 Introduction

Let (N, L) be a pair of Lie algebras, in which N is an ideal in L. If N admits a complement in L, then the Schur multiplier of the pair (N, L), $\mathcal{M}(N, L)$ is defined to be the factor Lie algebra $(R \cap [S, F])/[R, F]$, in which S is an ideal in F such that $N \cong S/R$ (see [2], fore more information). In particular, if N = L, then $\mathcal{M}(L, L) = \mathcal{M}(L)$ is the Schur multiplier of L (see [3,6, 9]). Moneyhun [9] proved that if L is a Lie algebra of dimension n, then $\dim \mathcal{M}(L) = \frac{1}{2}n(n-1) - t(L)$, where t(L) is a non-negative integer. In [3,5,6], all nilpotent Lie algebras are characterized, when $t(L) = 0, 1, \ldots, 8$. Let (N, L)be a pair of finite dimensional nilpotent Lie algebras. Saeedi et al. [13] proved that if N admits a complement K say, in L with dim N = n and dim K = m,

H. Arabyani

Department of Mathematics, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran. Tel.: +123-45-678910

Fax: +123-45-678910

 $E\text{-mail: } arabyani.h@gmail.com, \ h.arabyani@iau-neyshabur.ac.ir$

then

$$\dim \mathcal{M}(N,L) = \frac{1}{2}n(n+2m-1) - t(N,L),$$
(1)

where $t(N, L) \ge 0$. This gives us the Moneyhun's result, if m = 0. The author and colleagues [2] characterized the pair (N, L), for which t(N, L) = 0, 1, 2, 3, 4. Moreover, they determined pairs (N, L) for $t(N, L) = 0, 1, \ldots, 10$, when L is a filiform Lie algebra. Also, Niroomand and Russo [11] proved that

dim
$$\mathcal{M}(L) \le \frac{1}{2}(n+m-2)(n-m-1)+1,$$
 (2)

where L is a non-abelian nilpotent Lie algebra with dim L = n and dim $L^2 = m$. The above upper bound implies that dim $\mathcal{M}(L) = \frac{1}{2}(n-1)(n-2)+1-s(L)$, where $s(L) \geq 0$. Niroomand et al. in [10–12] classified the structure of L, when s(L) = 0, 1, 2, 3. Moreover, it is proved under some conditions that

$$\dim \mathcal{M}(N,L) = \frac{1}{2}(n-1)(n-2) + 1 + (n-1)m - s'(N,L),$$
(3)

where $s'(N, L) \ge 0$, dim N = n and dim K = m.

In the present paper, we characterize all pairs (N, L) when N is a filiform Lie algebra and s'(N, L) = 0, 1, 2, ..., 15. Note that in the proof of main theorem, the upper bound (2) enables us to provide a new technique in our classification which makes our upper bound smaller than the one in (1).

2 Main Results

In this section, first we discuss some results which will be used in the main theorem. A Lie algebra L is filiform if L has maximal nilpotency class(see [2] for more information). We recall that a Lie algebra L is called a Heisenberg algebra provided that $L^2 = Z(L)$ and dim $L^2 = 1$. A Heisenberg Lie algebra has odd dimension with a basis e, e_1, \ldots, e_{2m} subject to the relations $[e_{2i-1}, e_{2i}] = e$ for $i = 1, \ldots, m$. The Heisenberg Lie algebra of dimension 2m + 1 is denoted by H(m). A Lie algebra L is abelian, if [x, y] = 0, for all $x, y \in L$ and A(n)will denote the abelian Lie algebra of dimension n. In Theorem 1, we extend Theorem 5 of [1]. These results are similar to the work of B. Mashayekhy etal. in the case of groups (2013). See [[8], Theorems 2.1 and 2.2].

The following lemma plays an essential role in our investigations.

Lemma 1 ([14], Theorem 2.3) Let L be a non-abelian n-dimensional nilpotent Lie algebra of maximal class and $n \ge 4$. Then $0 \le s(L) \le 15$ if and only if L is isomorphic to one of the Lie algebras $L_{4,3}$, $L_{5,6}$, $L_{5,7}$, $L_{6,15}$, $L_{6,16}$, $L_{6,17}$, $L_{6,18}$, L_1 , L_2 , L_3 , L_4 , L_5 , L_6 , L_7 , or L_8 .

Theorem 1 Let (N, L) be a pair of finite dimensional Lie algebras such that L is a nilpotent Lie algebra, N is a non-abelian n-dimensional nilpotent Lie algebra of maximal class and $n \ge 4$. Also, let K be an ideal of L such that $L = N \oplus K$, dim N = n, dim K = m and $s' = s'(N,L) = \frac{1}{2}(n-1)(n-2) + 1 + (n-1)m - \dim \mathcal{M}(N,L).$

Then

- 1. In the cases s' = 0, 1 there are no pairs. 2. s' = 2 if and only if $(N, L) \cong (L_{4,3}, L_{4,3})$. 3. s' = 3 if and only if $(N, L) \cong (L_{4,3}, L_{4,3} \oplus A(1))$. 4. s' = 4 if and only if (N, L) is isomorphic to one of the following pairs: $(L_{5,6}, L_{5,6}), (L_{5,7}, L_{5,7}) \text{ or } (L_{4,3}, L_{4,3} \oplus A(2)).$ 5. s' = 5 if and only if $(N, L) \cong (L_{4,3}, L_{4,3} \oplus A(3))$. 6. s' = 6 if and only if (N, L) is isomorphic to one of the following pairs: $(L_{4,3}, L_{4,3} \oplus A(4)), (L_{5,6}, L_{5,6} \oplus A(1)), or (L_{5,7}, L_{5,7} \oplus A(1)).$ 7. s' = 7 if and only if (N, L) is isomorphic to one of the following pairs: $(L_{4,3}, L_{4,3} \oplus A(5))$ or $(L_{4,3}, L_{4,3} \oplus H(1))$. 8. s' = 8 if and only if (N, L) is isomorphic to one of the following pairs: $(L_{4,3}, L_{4,3} \oplus A(6)),$ $(L_{4,3}, L_{4,3} \oplus H(1) \oplus A(1)),$ $(L_{5,6}, L_{5,6} \oplus A(2)),$ $(L_{5,7}, L_{5,7} \oplus A(2)),$ $(L_{6,15}, L_{6,15}),$ $(L_{6,17}, L_{6,17}),$ $(L_{6,18}, L_{6,18}).$ 9. s' = 9 if and only if (N, L) is isomorphic to one of the following pairs:
- $\begin{array}{ll} (L_{4,3}, L_{4,3} \oplus A(7)), & (L_{4,3}, L_{4,3} \oplus H(1) \oplus A(2)), \\ (L_{4,3}, L_{4,3} \oplus H(2)), & (L_{6,14}, L_{6,14}), \\ (L_{6,16}, L_{6,16}). \end{array}$
- 10. s' = 10 if and only if (N, L) is isomorphic to one of the following pairs: $(L_{4,3}, L_{4,3} \oplus H(1) \oplus A(3)),$ $(L_{4,3}, L_{4,3} \oplus H(2) \oplus A(1)),$ $(L_{4,3}, L_{4,3} \oplus A(8)),$ $(L_{5,6}, L_{5,6} \oplus A(3)),$ $(L_{5,7}, L_{5,7} \oplus A(3)).$
- 12. s' = 12 if and only if (N, L) is isomorphic to one of the following pairs:
 - $(L_{4,3}, L_{4,3} \oplus H(1) \oplus A(5)),$ $(L_{4,3}, L_{4,3} \oplus H(2) \oplus A(3)),$ $(L_{4,3}, L_{4,3} \oplus A(10)),$ $(L_{4,3}, L_{4,3} \oplus L(4, 5, 2, 4) \oplus A(1)),$ $(L_{4,3}, L_{4,3} \oplus L(4, 5, 1, 6) \oplus A(1)),$ $(L_{4,3}, L_{4,3} \oplus L(5, 6, 2, 7)),$ $(L_{4,3}, L_{4,3} \oplus L'(5, 6, 2, 7)),$ $(L_{4,3}, L_{4,3} \oplus L(7, 6, 2, 7)),$ $(L_{4,3}, L_{4,3} \oplus L(7, 6, 2, 7, \beta_1, \beta_2)),$ $(L_{5,6}, L_{5,6} \oplus H(1)),$ $(L_{5,6}, L_{5,6} \oplus A(4)),$ $(L_{5,7}, L_{5,7} \oplus H(1)),$ $(L_{5,7}, L_{5,7} \oplus A(4)),$ $(L_{6,14}, L_{6,14} \oplus A(1)),$ $(L_{6,16}, L_{6,16} \oplus A(1)),$ $(L_1, L_1),$ (L_8, L_8) for $\lambda = 3$, $(L_2, L_2),$ $(L_4, L_4),$ $(L_5, L_5).$

13. s' = 13 if and only if (N, L) is isomorphic to one of the following pairs:

 $(L_{4,3}, L_{4,3} \oplus H(1) \oplus A(6)),$ $(L_{4,3}, L_{4,3} \oplus H(2) \oplus A(4)),$ $(L_{4,3}, L_{4,3} \oplus A(11)),$ $(L_{4,3}, L_{4,3} \oplus L'(7, 5, 1, 7)),$ $(L_{4,3}, L_{4,3} \oplus L(5, 6, 2, 7) \oplus A(1)),$ $(L_{4,3}, L_{4,3} \oplus L'(5, 6, 2, 7) \oplus A(1)),$ $(L_{4,3}, L_{4,3} \oplus L(7, 6, 2, 7) \oplus A(1)),$ $(L_{4,3}, L_{4,3} \oplus L(7, 6, 2, 7, \beta_1, \beta_2) \oplus A(1)),$ $(L_{4,3}, L_{4,3} \oplus L(4, 5, 2, 4) \oplus A(2)),$ $(L_{4,3}, L_{4,3} \oplus L(4, 5, 1, 6) \oplus A(2)),$ $(L_{4,3}, L_{4,3} \oplus L(7, 5, 2, 7)),$ $(L_{4,3}, L_{4,3} \oplus L(7, 5, 1, 7)),$ $(L_6, L_6),$ $(L_3, L_3),$ $(L_7, L_7),$ (L_8, L_8) for $\lambda \neq 3$.

14. s' = 14 if and only if (N, L) is isomorphic to one of the following pairs:

 $(L_{4,3}, L_{4,3} \oplus A(12)),$ $(L_{4,3}, L_{4,3} \oplus H(1) \oplus A(7)),$ $(L_{4,3}, L_{4,3} \oplus H(2) \oplus A(5)),$ $(L_{4,3}, L_{4,3} \oplus L(4, 5, 2, 4) \oplus A(3)),$ $(L_{4,3}, L_{4,3} \oplus L(4, 5, 1, 6) \oplus A(3)),$ $(L_{4,3}, L_{4,3} \oplus L(5, 6, 2, 7) \oplus A(2)),$ $(L_{4,3}, L_{4,3} \oplus L'(5, 6, 2, 7) \oplus A(2)),$ $(L_{4,3}, L_{4,3} \oplus L(7, 6, 2, 7) \oplus A(2)),$ $(L_{4,3}, L_{4,3} \oplus L(7, 6, 2, 7, \beta_1, \beta_2) \oplus A(2)),$ $(L_{4,3}, L_{4,3} \oplus L(7, 5, 2, 7) \oplus A(1)),$ $(L_{4,3}, L_{4,3} \oplus L(7, 5, 1, 7) \oplus A(1)),$ $(L_{4,3}, L_{4,3} \oplus L'(7, 5, 1, 7) \oplus A(1)),$ $(L_{5,6}, L_{5,6} \oplus H(1) \oplus A(1)),$ $(L_{5,6}, L_{5,6} \oplus A(5)),$ $(L_{5,7}, L_{5,7} \oplus H(1) \oplus A(1)),$ $(L_{5,7}, L_{5,7} \oplus A(5)),$ $(L_{6,15}, L_{6,15} \oplus A(2)),$ $(L_{6,17}, L_{6,17} \oplus A(2)),$ $(L_{6,18}, L_{6,18} \oplus A(2)).$

15. s' = 15 if and only if (N, L) is isomorphic to one of the following pairs:

$(L_{4,3}, L_{4,3} \oplus A(13)),$	$(L_{4,3}, L_{4,3} \oplus H(1) \oplus A(8)),$
$(L_{4,3}, L_{4,3} \oplus H(2) \oplus A(6)),$	$(L_{4,3}, L_{4,3} \oplus L(4, 5, 2, 4) \oplus A(4)),$
$(L_{4,3}, L_{4,3} \oplus L(4, 5, 1, 6) \oplus A(4)),$	$(L_{4,3}, L_{4,3} \oplus L(5, 6, 2, 7) \oplus A(3)),$
$(L_{4,3}, L_{4,3} \oplus L'(5, 6, 2, 7) \oplus A(3)),$	$(L_{4,3}, L_{4,3} \oplus L(7, 6, 2, 7) \oplus A(3)),$
$(L_{4,3}, L_{4,3} \oplus L(7, 6, 2, 7, \beta_1, \beta_2) \oplus A(3)),$	$(L_{4,3}, L_{4,3} \oplus L(7, 5, 2, 7) \oplus A(2)),$
$(L_{4,3}, L_{4,3} \oplus L(7, 5, 1, 7) \oplus A(2)),$	$(L_{4,3}, L_{4,3} \oplus L'(7, 5, 1, 7) \oplus A(2)),$
$(L_{6,14}, L_{6,14} \oplus A(2)),$	$(L_{6,16}, L_{6,16} \oplus A(2)).$

Proof The necessity of theorem follows from $L = N \oplus K$ and Lemma 1.4 of [7]. For sufficiency, put $s = s(N) = \frac{1}{2}(n-1)(n-2) + 1 - \dim \mathcal{M}(N)$. Thus, by Lemma 1.4 of [7], we have

$$mn - m = (s' - s) + (\dim N/N^2)(\dim K/K^2).$$
 (4)

Hence, $s \leq s'$. Now, suppose that s' = 0, then s = 0. So, there are no pairs by Lemma 1. If s' = 1, then s = 0, 1 and so, there are no pairs by Lemma 1.

Assume that s' = 2. If s = 2, then by Lemma 1, $N \cong L_{4,3}$. Hence, by (4) we have m = 0, which implies that $(N, L) \cong (L_{4,3}, L_{4,3})$.

case s' = 3. If s = 2, then by Lemma 1, $N \cong L_{4,3}$ and m = 1. This implies that $K \cong A(1)$ and so, $(N, L) \cong (L_{4,3}, L_{4,3} \oplus A(1))$.

case s' = 4. If s = 2, then $N \cong L_{4,3}$. Thus, by Lemma 1, m = 2 and so, $(N,L) \cong (L_{4,3}, L_{4,3} \oplus A(2))$. If s = 4, then by (4), $N \cong L_{5,6}$ or $L_{5,7}$. If $N \cong L_{5,6}$, then by (4), m = 0 and so, $(N,L) \cong (L_{5,6}, L_{5,6})$. Assume that $N \cong L_{5,7}$, then m = 0 and hence, $(N,L) \cong (L_{5,7}, L_{5,7})$.

case s' = 5. If s = 2, then m = 3 and dim $K^2 = 0$. Thus, $(N, L) \cong (L_{4,3}, L_{4,3} \oplus A(3))$. If s = 4, then, $N \cong L_{5,6}$ or $L_{5,7}$. Hence, there are no pairs by (4).

case s' = 6. If s = 2, then $N \cong L_{4,3}$ and so, by (4) we have $(N, L) \cong (L_{4,3}, L_{4,3} \oplus A(4))$. If s = 4, then $N \cong L_{5,6}$ or $L_{5,7}$. and so, by (4) we have

$$(N,L) \cong (L_{5,6}, L_{5,6} \oplus A(1)) \text{ or } (L_{5,7}, L_{5,7} \oplus A(1)).$$

case s' = 7. If s = 2, then by Lemma (1) $N \cong L_{4,3}$. Thus, by (4) we obtain

$$(N,L) \cong (L_{4,3}, L_{4,3} \oplus A(5)) \text{ or } (L_{4,3}, L_{4,3} \oplus H(1)).$$

If s = 4, then there are no pairs by Lemma 1 and (4).

case s' = 8. If s = 2, then, by Lemma 1 and (4),

$$(N,L) \cong (L_{4,3}, L_{4,3} \oplus A(6)) \text{ or } (L_{4,3}, L_{4,3} \oplus H(1) \oplus A(1)).$$

If s = 4, then

$$(N,L) \cong (L_{5,6}, L_{5,6} \oplus A(2)) \text{ or } (L_{5,7}, L_{5,7} \oplus A(2)).$$

Assume that s = 8, then by Lemma 1, $N \cong L_{6,15}$, $L_{6,17}$ or $L_{6,18}$. Hence by (4) we have

$$(N,L) \cong (L_{6,15}, L_{6,15}), (L_{6,17}, L_{6,17}), or (L_{6,18}, L_{6,18}).$$

case s' = 9. If s = 2, then by Lemma 1, $N \cong L_{4,3}$ and so, by (4) we have

$$(N,L) \cong (L_{4,3}, L_{4,3} \oplus A(7)), (L_{4,3}, L_{4,3} \oplus H(1) \oplus A(2)) \text{ or } (L_{4,3}, L_{4,3} \oplus H(2))$$

If s = 4, then by Lemma 1, we have $N \cong L_{5,6}$ or $L_{5,7}$ and so, there are no pairs by (4). If s = 8, then there are no pairs by Lemma 1 and (4). If s = 9, then by Lemma 1 and (4) we have

$$(N,L) \cong (L_{6,14}, L_{6,14}) \text{ or } (L_{6,16}, L_{6,16}).$$

case s' = 10. If s = 2, then $N \cong L_{4,3}$ and so, by (4) we have

 $(N,L) \cong (L_{4,3}, L_{4,3} \oplus H(1) \oplus A(3)), (L_{4,3}, L_{4,3} \oplus A(8)) \text{ or } (L_{4,3}, L_{4,3} \oplus H(2) \oplus A(1)).$

If s = 4, then by Lemma 1 and (4) we have

$$(N,L) \cong (L_{5,6}, L_{5,6} \oplus A(3)) \text{ or } (L_{5,7}, L_{5,7} \oplus A(3)).$$

If s = 8, then there are no pairs by Lemma 1 and (4). If s = 9, similarly there are no pairs.

case s' = 11. If s = 2, then by Lemma 1 and (4), we have

 $(N,L) \cong (L_{4,3}, L_{4,3} \oplus H(1) \oplus A(4)), (L_{4,3}, L_{4,3} \oplus H(2) \oplus A(2)) \text{ or } (L_{4,3}, L_{4,3} \oplus A(9)).$

If s = 4, then there are no pairs by Lemma 1 and (4). Assume that s = 8. Then by Lemma 1 and (4) we have

 $\begin{array}{ll} (N,L) \cong (L_{6,15}, L_{6,15} \oplus A(1)), & (L_{6,17}, L_{6,17} \oplus A(1), \\ (L_{6,18}, L_{6,18} \oplus A(1)), & (L_{4,3}, L_{4,3} \oplus L(4,5,2,4)), \\ (L_{4,3}, L_{4,3} \oplus L(4,5,1,6)). \end{array}$

If s = 9, then by Lemma 1 and (4), there are no pairs. case s' = 12. If s = 2, then by Lemma 1 and (4) we have

 $(N,L) \cong (L_{4,3}, L_{4,3} \oplus H(1) \oplus A(5)), (L_{4,3}, L_{4,3} \oplus H(2) \oplus A(3)) \text{ or } (L_{4,3}, L_{4,3} \oplus A(10)).$

If s = 4, then by Lemma 1 and (4) we have

 $(N,L) \cong (L_{5,6}, L_{5,6} \oplus H(1)), (L_{5,6}, L_{5,6} \oplus A(4)), (L_{5,7}, L_{5,7} \oplus H(1)) \text{ or } (L_{5,7}, L_{5,7} \oplus A(4)).$

If s = 8, then by Lemma 1 and (4), there are no pairs. If s = 9, then by Lemma 1 and (4) we have

 $\begin{aligned} &(N,L) \cong (L_{6,14}, L_{6,14} \oplus A(1)), &(L_{6,16}, L_{6,16} \oplus A(1)), \\ &(L_{4,3}, L_{4,3} \oplus L(4,5,1,6) \oplus A(1)), &(L_{4,3}, L_{4,3} \oplus L(5,6,2,7)), \\ &(L_{4,3}, L_{4,3} \oplus L'(5,6,2,7)), &(L_{4,3}, L_{4,3} \oplus L(7,6,2,7)), \\ &(L_{4,3}, L_{4,3} \oplus L(7,6,2,7,\beta_1,\beta_2)). \end{aligned}$

If s = 12, then by Lemma 1 and (4), we have

$$(N,L) \cong (L_1,L_1), (L_2,L_2), (L_4,L_4), (L_5,L_5) \text{ or } (L_8,L_8) \text{ for } \lambda = 3.$$

case s' = 13. If s = 2, then by Lemma 1 and (4) we have

$(N,L) \cong (L_{4,3}, L_{4,3} \oplus H(1) \oplus A(6)),$	$(L_{4,3}, L_{4,3} \oplus H(2) \oplus A(4)),$
$(L_{4,3}, L_{4,3} \oplus A(11)),$	$(L_{4,3}, L_{4,3} \oplus L'(7, 5, 1, 7)),$
$(L_{4,3}, L_{4,3} \oplus L(5, 6, 2, 7) \oplus A(1)),$	$(L_{4,3}, L_{4,3} \oplus L'(5, 6, 2, 7) \oplus A(1)),$
$(L_{4,3}, L_{4,3} \oplus L(7, 6, 2, 7) \oplus A(1)),$	$(L_{4,3}, L_{4,3} \oplus L(7, 6, 2, 7, \beta_1, \beta_2) \oplus A(1)),$
$(L_{4,3}, L_{4,3} \oplus L(4, 5, 2, 4) \oplus A(2)),$	$(L_{4,3}, L_{4,3} \oplus L(4, 5, 1, 6) \oplus A(2)),$
$(L_{4,3}, L_{4,3} \oplus L(7, 5, 2, 7)),$	$(L_{4,3}, L_{4,3} \oplus L(7,5,1,7)),$

If s = 4, 8, 9, 12, then there are no pairs by (4) and Lemma 1. If s = 13, then we can see that

$$(N,L) \cong (L_3,L_3), (L_6,L_6), (L_7,L_7) \text{ or } (L_8,L_8) \text{ for } \lambda \neq 3.$$

case s' = 14. Similar to the previous cases we have:

$(N,L) \cong (L_{4,3}, L_{4,3} \oplus A(12)),$	$(L_{4,3}, L_{4,3} \oplus H(1) \oplus A(7)),$
$(L_{4,3}, L_{4,3} \oplus H(2) \oplus A(5)),$	$(L_{4,3}, L_{4,3} \oplus L(4, 5, 2, 4) \oplus A(3)),$
$(L_{4,3}, L_{4,3} \oplus L(4,5,1,6) \oplus A(3)),$	$(L_{4,3}, L_{4,3} \oplus L(5, 6, 2, 7) \oplus A(2)),$
$(L_{4,3}, L_{4,3} \oplus L'(5, 6, 2, 7) \oplus A(2)),$	$(L_{4,3}, L_{4,3} \oplus L(7, 6, 2, 7) \oplus A(2)),$
$(L_{4,3}, L_{4,3} \oplus L(7, 6, 2, 7, \beta_1, \beta_2) \oplus A(2)),$	$(L_{4,3}, L_{4,3} \oplus L(7, 5, 2, 7) \oplus A(1)),$
$(L_{4,3}, L_{4,3} \oplus L(7,5,1,7) \oplus A(1)),$	$(L_{4,3}, L_{4,3} \oplus L'(7, 5, 1, 7) \oplus A(1)),$
$(L_{5,6}, L_{5,6} \oplus H(1) \oplus A(1)),$	$(L_{5,6}, L_{5,6} \oplus A(5)),$
$(L_{5,7}, L_{5,7} \oplus H(1) \oplus A(1)),$	$(L_{5,7}, L_{5,7} \oplus A(5)),$
$(L_{6,15}, L_{6,15} \oplus A(2)),$	$(L_{6,17}, L_{6,17} \oplus A(2)),$
$(L_{6,18}, L_{6,18} \oplus A(2)).$	

case s' = 15. Similar to the previous cases we have:

$(N,L) \cong (L_{4,3}, L_{4,3} \oplus A(13)),$	$(L_{4,3}, L_{4,3} \oplus H(1) \oplus A(8)),$
$(L_{4,3}, L_{4,3} \oplus H(2) \oplus A(6)),$	$(L_{4,3}, L_{4,3} \oplus L(4,5,2,4) \oplus A(4)),$
$(L_{4,3}, L_{4,3} \oplus L(4,5,1,6) \oplus A(4)),$	$(L_{4,3}, L_{4,3} \oplus L(5, 6, 2, 7) \oplus A(3)),$
$(L_{4,3}, L_{4,3} \oplus L'(5, 6, 2, 7) \oplus A(3)),$	$(L_{4,3}, L_{4,3} \oplus L(7, 6, 2, 7) \oplus A(3)),$
$(L_{4,3}, L_{4,3} \oplus L(7, 6, 2, 7, \beta_1, \beta_2) \oplus A(3)),$	$(L_{4,3}, L_{4,3} \oplus L(7, 5, 2, 7) \oplus A(2)),$
$(L_{4,3}, L_{4,3} \oplus L(7, 5, 1, 7) \oplus A(2)),$	$(L_{4,3}, L_{4,3} \oplus L'(7, 5, 1, 7) \oplus A(2)),$
$(L_{6,14}, L_{6,14} \oplus A(2)),$	$(L_{6,16}, L_{6,16} \oplus A(2)).$

Here H(m) denotes the Hiesenberg Lie algebra of dimension 2m + 1, A(m) is an *m*-dimensional abelian Lie algebra and L(a, b, c, d) denotes the Lie algebra discovered for the case t(L) = a, where $b = \dim L$, $c = \dim Z(L)$ and d = t(L). (See [3,5,6] for more information).

Lable 1		
$\dim L$	Non Zero Multiplication	Nilpotent Lie algebra
3	$[x_1, x_2] = x_3$	H(1)
4	$[x_1, x_2] = x_3$	$H(1)\oplus A(1)$
5	$[x_1, x_2] = x_3$	$H(1)\oplus A(2)$
4	$[x_1, x_2] = x_3, [x_1, x_3] = x_4$	$L(3,4,1,4) = L_{4,3}$
5	$[x_1, x_2] = x_3, [x_1, x_4] = x_5$	L(4, 5, 2, 4)
6	$[x_1, x_2] = x_3$	$H(1)\oplus A(3)$
5	$[x_1, x_2] = x_5, [x_3, x_4] = x_5$	H(2)
7	$[x_1, x_2] = x_3$	$H(1) \oplus A(4)$
5	$[x_1, x_2] = x_3, [x_1, x_3] = x_5$	$L(3,4,1,4) \oplus A(1)$
5	$[x_1, x_2] = x_3, [x_1, x_3] = x_5, [x_2, x_4] = x_5$	L(4, 5, 1, 6)
6	$[x_1, x_2] = x_5, [x_1, x_3] = x_5, [x_3, x_4] = x_5$	$H(2)\oplus A(1)$
6	$[x_1, x_2] = x_3, [x_1, x_4] = x_6$	$L(4,5,2,4) \oplus A(1)$
8	$[x_1, x_2] = x_3$	$H(1) \oplus A(5)$
5 5	$[x_1, x_2] = x_3, [x_1, x_3] = x_4, [x_2, x_3] = x_5$	L(7, 5, 2, 7)
	$[x_1, x_2] = x_3, [x_1, x_3] = x_4, [x_2, x_3] = x_5$	L(7, 5, 1, 7)
5	$[x_1, x_2] = x_3, [x_1, x_3] = x_4, [x_2, x_3] = x_5$	L'(7, 5, 1, 7)
6	$[x_1, x_2] = x_3, [x_1, x_4] = x_6, [x_2, x_5] = x_6$	L(5, 6, 2, 7)
6	$[x_1, x_2] = x_3, [x_4, x_5] = x_6$	L'(5, 6, 2, 7)
6	$[x_1, x_2] = x_5, [x_3, x_4] = x_6$	L(7, 6, 2, 7)
6	$[x_1, x_2] = x_5 + \beta_1 x_6, [x_3, x_4] = x_5, [x_1, x_4] = x_6, [x_3, x_2] = \beta_2 x_6$	$L(7, 6, 2, 7, \beta_1, \beta_2)$
7	$[x_1, x_2] = x_5, [x_3, x_4] = x_5$	$H(2)\oplus A(2)$
7	$[x_1, x_2] = x_7, [x_3, x_4] = x_7, [x_5, x_6] = x_7$	H(3)
6	$[x_1, x_2] = x_3, [x_1, x_3] = x_6$	$L(3,4,1,4) \oplus A(2)$
6	$[x_1, x_2] = x_3, [x_1, x_3] = x_6, [x_2, x_4] = x_6$	$L(4,5,1,6)\oplus A(1)$
7	$[x_1, x_2] = x_3, [x_1, x_4] = x_7$	$L(4,5,2,4)\oplus A(2)$
8	$[x_1, x_2] = x_5, [x_3, x_4] = x_5$	$H(2)\oplus A(3)$
8	$[x_1, x_2] = x_7, [x_3, x_4] = x_7, [x_5, x_6] = x_7$	$H(3)\oplus A(1)$
10	$[x_1, x_2] = x_3$	$H(1)\oplus A(7)$

 ${\bf Table \ 2} \ {\rm Seven-dimensional \ nilpotent \ Lie \ algebras \ of \ maximal \ class}$

NT	NT 14:1:4:	$1: \Lambda \Lambda(T)$
Name	Nonzero multiplication	$\dim \mathcal{M}(L)$
$L_1 = (123457A)$	$[x_1, x_i] = x_{i+1}, 2 \le i \le 6$	4
$L_1 = (123457B)$	$[x_1, x_i] = x_{i+1}, 2 \le i \le 6$	
	$[x_2, x_3] = x_7$	4
$L_3 = (123457C)$	$[x_1, x_i] = x_{i+1}, 2 \le i \le 6$	
	$[x_2, x_5] = x_7, [x_3, x_4] = -x_7$	3
$L_4 = (123457D)$	$[x_1, x_i] = x_{i+1}, 2 \le i \le 6$	
	$[x_2, x_4] = x_7, [x_2, x_3] = x_6$	4
$L_5 = (123457E)$	$[x_1, x_i] = x_{i+1}, 2 \le i \le 6$	
	$[x_2, x_4] = x_7, [x_2, x_3] = x_6 + x_7$	4
$L_6 = (123457F)$	$[x_1, x_i] = x_{i+1}, 2 \le i \le 6$	
	$[x_3, x_4] = -x_7, [x_2, x_3] = x_6$	
	$[x_2, x_4] = [x_2, x_5] = x_7$	3
$L_7 = (123457H)$	$[x_1, x_i] = x_{i+1}, 2 \le i \le 6$	
	$[x_2, x_4] = x_6, [x_2, x_5] = x_7$	3
	$[x_2, x_3] = x_5 + x_7$	
$L_8 = (123457I)$	$[x_1, x_i] = x_{i+1}, 2 \le i \le 6$	
	$[x_2, x_5] = \lambda x_7, [x_3, x_4] = (1 - \lambda)x_7$	
	$[x_2, x_3] = x_5, [x_2, x_4] = x_6$	4 for $\lambda = 3$, and 3 otherwise

References

 H. Arabyani, E. khamseh, Pairs of finite dimensional nilpotent and filiform Lie algebras, Global Analysis and Discrete Mathematics, 6, 179–186 (2021).

Table 1

Name	Basis	Nonzero multiplication	$\dim \mathcal{M}(L)$
$L_{4,3}$	x_1,\ldots,x_4	$[x_1, x_2] = x_3, [x_1, x_3] = x_4$	2
$L_{5,7}$	x_1, \ldots, x_5	$[x_1, x_2] = x_3, [x_1, x_3] = x_4, [x_1, x_4] = x_5$	3
$L_{5,6}$	x_1, \ldots, x_5	$[x_1, x_2] = x_3, [x_1, x_3] = x_4, [x_1, x_4] = x_5$	
		$[x_2, x_3] = x_5$	3
$L_{6,14}$	x_1,\ldots,x_6	$[x_1, x_2] = x_3, [x_1, x_3] = x_4, [x_2, x_3] = x_5$	
		$[x_2, x_5] = [x_4, x_3] = x_6, [x_1, x_4] = x_5$	2
$L_{6,15}$	x_1,\ldots,x_6	$[x_1, x_2] = x_3, [x_1, x_3] = x_4, [x_1, x_4] = x_5$	
		$[x_1, x_5] = [x_2, x_4] = x_6, [x_2, x_3] = x_5$	3
$L_{6,16}$	x_1,\ldots,x_6	$[x_1, x_2] = x_3, [x_1, x_3] = x_4, [x_1, x_4] = x_5$	
		$[x_2, x_5] = [x_4, x_3] = x_6,$	2
$L_{6,17}$	x_1, \ldots, x_6	$[x_1, x_2] = x_3, [x_1, x_3] = x_4, [x_1, x_4] = x_5$	
		$[x_1, x_5] = [x_2, x_3] = x_6,$	3
$L_{6,18}$	$x_1,, x_5, x_6$	$[x_1, x_2] = x_3, [x_1, x_3] = x_4, [x_1, x_4] = x_5$	
		$[x_1, x_5] = x_6$	3

Table 3 Lie algebras of maximal class of dimension n for $4 \le n \le 6$.

- H. Arabyani, F. Saeedi, M. R. R. Moghaddam and E. Khamseh, Characterization of nilpotent Lie algebras pair by their Schur multipliers, Comm. Algebra, 42, 5474–5483 (2014).
- P. Batten, K. Moneyhun and E. Stitzinger, On characterizing nilpotent Lie algebras by their multipliers, Comm. Algebra, 24, 4319–4330 (1996).
- J. R. Gomez, A. Jimenez-Merchan and Y. Khakimdjanov, Low dimensional filiform Lie algebras, J. Pure Appl. Algebra, 130, 133–158 (1998).
- P. Hardy, On characterizing nilpotent Lie algebras by their multipliers III, Comm. Algebra, 33, 4205–4210 (2005).
- 6. P. Hardy and E. Stitzinger, On characterizing nilpotent Lie algebras by their multipliers, t(L) = 3; 4; 5; 6, Comm. Algebra., 26, 3527–3539 (1998).
- E. Khamseh and S. A. Niri, Classification of pair of nilpotent Lie algebras by their Schur multipliers, Math. Reports, 20, 177–185 (2018).
- F. Mohammadzadeh, A. Hokmabadi and B. Mashayekhy, On the order of the Schur multiplier of a pair of finite p-groups II, International Journal of Groups Theory, 2, 1–8 (2013).
- 9. K. Moneyhun, Isoclinisms in Lie algebras, Algebras Groups Geom., 11 9-22 (1994).
- P. Niroomand, On dimension of the Schur multiplier of nilpotent Lie algebras, Cent. Eur. J. Math., 9, 57–64 (2011).
- P. Niroomand and F. Russo, A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra, 39, 1293–1297 (2011).
- F. Saeedi, H. Arabyani and P. Niroomand, On dimension of Schur multiplier of nilpotent Lie algebras II, Asian-Eur. J. Math., 10, 1750076 (8 pages) (2017).
- F. Saeedi, A. R. Salemkar and B. Edalatzadeh, The commutator subalgebra and Schur multiplier of a pair of nilpotent Lie algebras, J. Lie Theory., 21, 491–498 (2011).
- A. Shamsaki, and P. Niroomand, The Schur multipliers of Lie algebras of maximal class, Internat. J. Algebra. Comput., 29, 795–801 (2019).