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Abstract A complete subgraph of any simple graph G on k vertices is called
a k-clique of G. In this paper, we first introduce the concept of the value of
a k-clique (k > 1) as an extension of the idea of the degree of a given vertex.
Then, we obtain the generalized version of handshaking lemma which we call
it clique handshaking lemma. The well-known classical result of Mantel states
that the maximum number of edges in the class of triangle-free graphs with n

vertices is equal to n2

4 . Our main goal here is to find an extension of the above
result for the class of Kω+1-free graphs, using the ideas of the value of cliques
and the clique handshaking lemma.
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1 Introduction

Finding the maximum values of some key invariants in discrete structures
with forbidden (finite) family of substructures is an interesting problem in
the area of extremal combinatorics with potential applications in theoretical
and applied computer science. One of the classical problems of these kind
is the well-known Mantel’s theorem [1] which answers the question about the
maximum number of edges in any simple graph in which the family of forbidden
subgraphs consists of only the triangle graph K3. There are many interesting
proofs of the well-known Mantel’s theorem and one of those beautiful proofs is
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based on the idea of maximum independent set of vertices. Roughly speaking,
the basic idea is to partition the vertex set of a given graph G = (V,E)
into two sets A and B. The first set A is an independent set of maximum
cardinality (maximum number of vertices) and B is the rest of vertices. Now,
considering the maximality of A, the triangle-freeness of G and the well-known
handshaking lemma, one can obtain an upper bound for the number of edges
based on the sum of degrees of vertices lie in B. Finally combining all previous
findings with the well-known arithmetic-geometric mean inequality, we get the
classical Mantel’s theorem.

It seems that the next step is to consider the set A of vertices of maximum
cardinality for which the graph induced on A is triangle-free. Then, using a
similar argument, one can get a generalization of Mantel’s result for the class of
K4-free graphs which we call it edge Mantel’s theorem. Next, we generalize the
concept of the degree of a vertex to a higher k−clique (k > 1) by introducing
the idea of the value of a clique. This simply means that a value of a clique
can be defined as the number of common neighbors of it’s vertices. In this
direction, we also obtain a higher clique generalization of the handshaking
lemma which we call it clique handshaking lemma. Finally, using the same
machinery introduced for proving the classical Mantel’s theorem, we obtain
the so called clique Mantel’s theorem.

2 Basic Definitions and Notations

Throughout this paper, we will assume that our graphs are finite, simple and
undirected. For terminologies which are not defined here, one can refer to the
book [5].

For a give graph G = (V,E), the vertex set and the edge set will be
denoted by V (G) and E(G), respectively. For a vertex v ∈ V (G), it’s open
neighborhood denoted by NG(v) is the set of vertices adjacent to v. A subgraph
of G consisting of all those vertices that are pairwise adjacent is called a
complete subgraph (clique) of G. A complete subgraph with k vertices will
be called a k-clique. The set of all k-cliques in G is denoted by ∆k(G). We
will also denote the number of k-cliques of a graph G by ck(G). A complete
subgraph on three vertices is called a triangle. A subset of vertices with no
edges among them is called an independent set of G.

A generalization of the concept of the degree of a vertex can be extended
to the value of an edge, as follows.

Definition 1 For a given graph G = (V,E) and an edge e = {u, v} ∈ E(G),
the value of e denoted by valG(e) is defined as the number of common neigh-
bors of two end vertices u and v of the edge e. More precisely, we have

valG(e) =
∣∣∣NG(u) ∩NG(v)

∣∣∣.
Remark 1 It is interesting to note that a definition similar to the value of an
edge has been given in the literature (see for instance [3]). Indeed, the co-degree
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of two vertices u, v ∈ V (G), not necessarily adjacent, is defined as the number
of their common neighborhoods.
Example 1 Let G = (V,E) be a graph depicted in Fig. 1. Then, the values of
the edges of G are, as follows

valG(e12) = valG(e13) = valG(e23) = 1, valG(e34) = 0. (1)

G1 :

1

2

3

4

Fig. 1 The values of edges for the graph G1

Next, we generalize the above idea for any k-clique qk ∈ ∆k(G) (k > 1) of G.
Definition 2 (Value of a Clique) Let G = (V,E) be a simple graph and
qk be a k-clique of G. Then, we define the value of the clique qk denoted by
valG(qk), as follows

valG(qk) =
∣∣∣ ⋂
v∈V (qk)

NG(v)
∣∣∣. (2)

As an extension of the well-known handshaking lemma, we have the following
key result.
Lemma 1 [Clique Handskaing Lemma] For a simple graph G = (V,E), we
have ∑

qk∈∆k(G)

valG(qk) = (k + 1)ck+1(G), (k ≥ 1). (3)

One can give several proofs of the above lemma. Here, we present a proof
which based on the idea of double-counting technique.
Proof Let G = (V,E) be any simple graph. Define the set Ik(G), as follows.

Ik(G) = {(qk, qk+1) ∈ ∆k(G)×∆k+1(G) | qk is a subgraph of qk+1}. (4)

The proof proceeds by counting the set Ik(G) in two different ways.
Case I. We first fix the clique qk. Then, it is clear that the number of those
(k+1)-cliques containing qk is exactly valG(qk). Now, summing over all those
k-cliques qk will result in

∑
qk∈∆k(G) valG(qk).

Case II. Next, we fix the (k + 1)-clique qk+1. Then, it is obvious that the
number of such k-cliques which are the subgraph of qk+1 is equal to k + 1.
Thus, by summing over all (k + 1)-cliques, we get (k + 1)ck+1(G).
Finally, the proof is complete by the double-counting technique.
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Remark 2 In is worthy to note that the above lemma is called the trans-
fer equations by Knill in [6] which is even true for the generalized discrete
structures like simplicial complexes. Indeed, the transfer equations are used to
obtain a graph-theoretical version of the well-known Gauss-Bonnet formula in
differential geometry.

We conclude this section by recalling the following well-known arithmetic-
geoemtric mean ineqaulity.

Lemma 2 For a sequence of n non-negative real numbers a1, a2, . . . , an, we
have

n
√
a1a2 · · · an ≤ a1 + a2 + · · ·+ an

n
, (5)

and the equality holds iff a1 = a2 = · · · = an.

3 Main Results

In this section, we will use the idea of the value of cliques to generalize the
following clique-counting inequality due to Mantel [1].

Theorem 1 (Mantel’s Theorem for Triangle-free Graphs) For a given
triangle-free graph G = (V,E) with n vertices and m edges, we have

m ≤ n2

4
.

The motivation of this paper originates from the proof of the above classical
result which is based on the idea of maximality. Thus, we also include the
proof.

Proof Let A ⊆ V (G) be an independent set of maximum cardinality (a maxi-
mum independent set). Next, we put B = V (G)−A. Since, G is triangle-free,
the open neighborhood of any arbitrary vertex v ∈ V (G) is an independent
set. Hence, by the maximality of A, we immediately conclude that

degG(v) = |NG(v)| ≤ |A|, ∀ v ∈ V (G). (6)

On the other hand, since A is an independent set of vertices, we obviously
have ∑

v∈A

degG(v) ≤ m. (7)

Considering the well-known handshaking lemma, we also get∑
v∈A

degG(v) +
∑
v∈B

degG(v) = 2m. (8)
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Form identities (7) and (8), we conclude that

m ≤
∑
v∈B

degG(v). (9)

Thus, from relations (6), (9) and the arithmetic-geometric mean inequality
(Lemma 2 for n = 2), we finally obtain

m ≤
∑
v∈B

degG(v)

≤
∑
v∈B

|A|

= |A||B|

≤
( |A|+ |B|

2

)2

≤ n2

4
,

as required.

Remark 3 It is important to note that from the arithmetic-geometric mean
inequality in the above proof, it immediately follows that the extremal graph
for Mantel’s classical result is the balanced complete bipartite graph Kn

2 ,n2
.

But here, we are only interested in extremal bounds (inequalities) and not the
extremal graphs themselves.

4 Edge Mantel’s Theorem

The next result is a slight generalization of the Mantel’s theorem and is based
on the idea of the value of an edge and the generalized handshaking lemma
(Lemma 1) in graphs.

Theorem 2 [Edge Mantel’s Theorem] For a given K4 -free graph G = (V,E)
with n vertices and t triangles, we have

t ≤ n3

27
.

Proof Let G be a K4-free graph. We also let A be a set of vertices of G with
maximum cardinality in which G[A] is a triangle-free graph.

Now, we note that for any K4-free graph G, the open neighborhood of v,
for each v ∈ V (G), is a triangle-free graph. This immediately implies that

c2(G[NG(v)]) ≤
|A|2

4
, (∀v ∈ V (G)). (10)



176 Hossein Teimoori Faal

On the other hand, we clearly have∑
v∈A

c2(G[NG(v)]) ≤ |T (G)| = t. (11)

By using the clique handsahking lemma (Lemma 1 for k = 3)∑
v∈V (G)

c2(G[NG(v)]) =

(
2 + 1

2

)
c3(G) = 3|T (G)| = 3t. (12)

From (11) and (12), we get

2t ≤
∑
v∈B

c2(G[NG(v)]). (13)

Thus, using arithmetic-geometric mean inequality for n = 3, we finally get

t ≤ 1

2

∑
v∈B

c2(G[NG(v)])

≤ 1

2

∑
v∈B

|A|2

4

≤ 1

8
|A|2

∑
v∈B

1 =
1

8
|A|2|B|1

≤ 1

8

(
2|A|+ |B|

3

)3

≤
(
|A|+ |B|

3

)3

≤
(
n

3

)3

.

5 Clique Mantel’s Theorem

Now, considering the idea of the value of a clique and the clique handshaking
lemma and using similar arguments as above, we obtain the following gener-
alization of Theorem 2.

Theorem 3 (Clique Mantel’s Theorem) Let G be a Kω+1-free graph with
n vertices. Then, we have

cω(G) ≤
(
n

ω

)ω

. (14)

Proof We proceed by induction on the clique number ω = ω(G) ≥ 2 of the
graph G. The base case ω(G) = 2 is ture (the classical Mantel’s theorem). Let
A be the set of vertices of G with the maximum cardinality in which G[A] is
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a Kω-free graph. We also put B = V (G) − A. Now, by induction hypothesis,
we have

cω(G[NG(v)]) ≤
(

|A|
ω − 1

)ω−1

. (15)

On the other hand, by the maximality of A, we clearly get∑
v∈A

cω(G[NG(v)]) ≤ |∆ω(G)| = cω(G). (16)

Now, considering the clique handshaking lemma for k = ω(G) and the inequal-
ity (16), we obtain

(ω − 1)cω(G) ≤
∑
v∈B

cω(G[NG(v)]). (17)

Thus, considering the inequality (15) and the well-known arithmetic-geometric
mean inequality (Lemma 2), we finally get

cω(G) ≤ 1

ω − 1

∑
v∈B

cω(G[NG(v)])

≤ 1

ω − 1

∑
v∈B

(
|A|

ω − 1

)ω−1

≤ 1

(ω − 1)ω
|A|ω−1

∑
v∈B

1 =
1

(ω − 1)ω
|A|ω−1|B|1

≤ 1

(ω − 1)ω

(
(ω − 1)|A|+ |B|

ω

)ω

≤
(
|A|+ |B|

ω

)ω

≤
(
n

ω

)ω

.

6 Concluding Remarks and Future Works

In this paper, we obtain an upper bound for the number of k-clique in the
class of (k + 1)-cliques-free graphs; that is, the class of those graphs not con-
taining any complete subgraph of on (k + 1) vertices. The basic ideas were
maximality, clique handshaking identity and using the arithmetic-geometric
mean inequality.

Our future project is to consider a more general class of graphs that we
will call them H-free graphs. We recall that the increasing family [4] of graphs
H is the following

H = {H1,H2, . . . , Hk,Hk+1, . . .},
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in which H1 = K1 and each Hi is an induced subgraph of Hi+1, for all i. Our
main goal is to find an upper bound similar to that of Theorem 3 for the
maximum number of copies of Hk in the class of those graphs not containing
any subgraph isomorphic to Hk+1 (for any integer k > 1). To achieve this goal,
we need two main steps. We have to first define a similar notion of the value
of a clique for any graph Hk in H. Then, we need to find an analogue of our
key lemma; the clique handshaking lemma 1. We will call it H-handshaking
lemma. The following result, due to Kelly [2], will play an essential role.

Proposition 1 Let G = (V,E) be an n-vertex graph with no isolated vertices.
Then for any graph H on k vertices, we have

(n− k)s(H,G) =
∑
v∈V

s(H,G− v),

where s(H,G) denotes the number of subgraphs of G isomorphic to H.

Note that in particular case where Hk is a k-clique, it is not hard to show that
Proposition 1 is equivalent to our clique handshaking lemma.
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