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Abstract In this paper, we propose a radial basis function partition of unity
(RBF-PU) method to solve sparce optimal control problem governed by the
elliptic equation. The objective function, in addition to the usual quadratic
expressions, also includes an L1-norm of the control function to compute its
spatio sparsity. Meshless methods based on RBF approximation are widely
used for solving PDE problems but PDE-constrained optimization problems
have been barely solved by RBF methods. RBF methods have the benefits
of being versatile in terms of geometry, simple to use in higher dimensions,
and also having the ability to give spectral convergence. In spite of these ad-
vantages, when globally RBF collocation methods are used, the interpolation
matrix becomes dens and computational costs grow with increasing size of data
set. Thus, for overcome on these problemes RBF-PU method will be proposed.
RBF-PU methods reduce the computational effort. The aim of this paper is
to solve the first-order optimality conditions related to original problem.

Keywords Sparse · Optimal control · Radial basis functions · Partition of
unity
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1 Introduction

In areas like robotics, sports movement patterns, the control of chemical reac-
tions, and power plants, the optimal control of ordinary differential equations
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is crucial. Partial differential equations must be used to describe the processes
to be optimized in many situations where regular differential equations are no
longer sufficient to characterize them. A crucial role is played by the optimal
control problem (OCP), which is governed by partial differential equations, in
many branches of science and engineering. Partial differential equations can
be used to simulate a variety of physical phenomena, such as heat conduction,
diffusion, electromagnetic waves, fluid flows, and freezing processes [8–10,26].

Due to the widespread use of optimization problems with PDE constraints
in various sciences and industries such as oil and gas industry, they are in-
teresting for many researchers in various fields and many efforts have been
made to provide efficient and useful solutions for them. When in the objective
function of this category of optimization problems there is an expression with
L1 norm, they transform to sparse optimization problems. They were first ex-
amined, as far as we know, by Stedler in 2007 (Newton-typed algorithms were
proposed for them), and then various methods have been proposed to solve
them, some of which are mentioned below. Porcelli et al. [25] used a general
semismooth Newton’s algorithm and a preconditioner for solving them. Langer
et al. [18] applied unstructured space-time finite element method for optimal
sparse control of semilinear parabolic equations. The authors of [33] solve dual
of main problem instead of itself using a majorized accelerated block coordi-
nate descent. Recently, the author of [29] have provided an an adaptive finite
element method for the sparse optimal control of fractional diffusion. Pearson
et al. proposed an efficient method based on the interior method [24]. For an
optimal control problem that includes a nondifferentiable cost functional, the
Poisson problem as the state equation, and control constraints, the authors of
[1] presented and examined trustworthy and effective a posteriori error esti-
mators. While three different approaches are used to approximate the control
variable: piecewise constant discretization, piecewise linear discretization, and
the so-called variational discretization approach. The unstructured space-time
finite element method was used by Langer et al. [18] for the best sparse man-
agement of semilinear parabolic equations. Instead of solving the dual of the
primary problem themselves, the authors of [33] use a majorized accelerated
block coordinate descent. A recent adaptive finite element approach for the
sparse optimal control of fractional diffusion has been presented by the author
of [29]. Based on the interior method, Pearson et al. suggested an effective
method; [24].

In this paper we will consider the distributed convection-diffusion control
problem as follows:

min
y,w

1

2
∥y − ŷ∥2L2

+
β

2
∥w∥2L2

+ γ∥w∥L1 (1)

Ay = w + g inΩ, (2)
y = 0 on ∂Ω, (3)
w ∈ Wad = {h(x)|a ≤ w ≤ b, a.e. onΩ} (4)
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where A denotes the Laplacian operator, g ∈ L2(Ω), the domain Ω ⊂ Rd, d = 2
or 3. y denotes the state variable and ŷ is desired state, w denotes the control
variable, and β > 0 is a regularization parameter.
Optimality conditions for this problem is as follows (for more details see [34]):

Ay − w − g = 0, A∗p+ y − ŷ = 0, −p+ βw + µ = 0, (5)
w −max(0, w + c(µ− γ))−min(0, w + c(µ+ γ))+

max(0, (w − b) + c(µ− γ)) +min(0, (w − a) + c(µ+ γ)) = 0 (6)

where c > 0 and A∗, p and µ are duals A, y and w respectively. Stadler in [34]
was able to rewrite the above conditions by performing some calculations and
introducing an operator:

w − β−1max(0, Υw − γ)− β−1min(0, Υw + γ)+

β−1max(0, Υw − γ − βb)− β−1min(0, Υw + γ − βa) = 0 (7)

where Υw = Sw + h, S = −A−∗A−1 and h = −A−∗(A−1g − ŷ).
The following two methods are available for solving PDE-constrained opti-

mization problems: The first option is to discretize first, then optimize, which
entails creating a discrete cost functional and then deriving discrete optimality
requirements from it. In the continuous situation, one can also derive optimal-
ity conditions, which they can then discretize. The optimize-then-discretize
strategy is what it is called.
These two approaches overlap and result in the same discrete equation for
many PDE situations, especially those that are self-adjoint. There will gener-
ally be a difference between the optimize-then-discretize and discretize-then-
optimize techniques because the convection diffusion equation is not self-
adjoint.

In [5,15], we have investigated the streamline upwind Petrov-Galerkin
(SUPG) stabilized finite element approach for the convection-diffusion con-
trol problem. The adjoint-consistent Local Projection Stabilization method is
used by Pearson and colleagues in [23] and also is discussed in [2–4]. In this
study, the RBF-PU approach is the main topic.

Radial Basis Function (RBF) methods are basic tools for interpolating
scattered data spicialily in higher dimensional domains. This method was first
introduced by Kansa [17] for solving partial differential equations (PDEs) in
1990. In [27], the authors applied RBF method to find the optimal control of
a parabolic distributed parameter system with a quadratic cost function. In
[22] Pearson used RBF collocation methods to the problem of Poisson control.

Basic tools for interpolating scattered data, particularly in higher dimen-
sional domains, include Radial Basis Function (RBF) algorithms. In 1990,
Kansa [17] invented this technique for solving partial differential equations
(PDEs). To identify the best control for a parabolic distributed parameter
system with a quadratic cost function, the authors of [27] used the RBF ap-
proach. Pearson applied RBF collocation techniques to the Poisson control
problem in [22].
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Radial basis functions have gained a lot of popularity in the last twenty
years as a method for solving partial differential equations. Despite the general
simplicity of RBF approaches in tackling many issues, global methods, regret-
tably, have a disadvantage in that, as the size of the problem increases, the
computational cost of solving dense linear systems increases. Good attempts
have been made to localize RBF collocation algorithms in order to address
these drawbacks. One of the useful techniques in this regard is the partition
unity method, which has been used in a number of articles. Since around
1960, the Partition of Unity (PU) approach has been utilized for interpola-
tion [32]; more recently, the PU method has been integrated with RBFs [36,
30]. Through the combination of the Partition of Unity method and rational
Radial Basis Function (RBF) interpolants, Marchi et al. suggested a localized
approach [11]. The authors of [6] used an adaptive refinement approach to
address Poisson problems using a collocation scheme based on the radial basis
function partition of unity (RBF-PU). For the initial-boundary value problem,
Garmanjani et al. [13] used the RBF partition of unity approach (RBF-PUM)
based on a finite difference (FD) scheme. To price American and European
options under the Lévy model, Fereshtian et al. [12] developed the RBF-PU
approach for spatial discretization of partial integro-differential equations. Us-
ing the RBF division of unity local approach, the ellipitic interface difficulties
were resolved in [14]. A RBF partition of unity method employing a direct
discretization approach for PDEs was just recently proposed by Mirzaee [21].

RBF-PUM is a local mesh-free approach that divides the original domain
into numerous overlapping subdomains or patches that cover it. In the RBF-
PU technique, each overlapping patch receives a local RBF-approximation that
is then combined with compactly supported PU weight functions to generate
the global approximation. A comparison between global RBF and RBF-PUM
has been made for the option pricing issues in [31]. The RBF-PUM has been
shown to be the most effective solution for these problems.

This study develops and applies the RBF-PU approach to the sparse PDE
constrained optimization problem. The remainder of this paper is structured as
follows: We provide a brief summary of RBF approaches in Section 2. Deal with
the RBF-PU method’s statement next, which is that it can solve constrained
sparse PDE optimization problems. Finally, to demonstrate the precision and
effectiveness of the suggested strategy, some numerical results are presented
in Section 4.

2 Radial basis function (RBF) method

In this section, we introduced RBF methods for interpolating of scattered data.

Definition 1 A function Φ : Rs → R, s is the dimension of the interpolation
space, is called radial basis function provided there exists a univariate function
φ : [0,∞) → R such that

Φ(x) = φ(r), where r = ∥x∥,
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Table 1 Som well-known RBFs
Name of functions Definition

cubic r3

Quintic r5

Gaussian(GA) exp(−ε2r2)
Inverse quadrics (IQ) 1/(r2 + ε2)

Wendland functions,where ρ is a polynomial (1− r)mρ(r)

Multiquadratic (MQ)
√

1 + (cr)2

Shifted logarithm log(r2 + c2)
Thin plate Splines(TPS) (−1)k+1r2k log(r)

and ∥.∥ is the Euclidean norm on Rs.
Some well-known radial basis functions are listed in Tabel 1.

Assume that x1, · · · , xN are a given collection of dispersed nodes in Ω ⊆ RS .
The RBF approximation for U(x) is denoted by UN (x) and has the following
form: In Table 2 ϵ, c, k and m are shape parameter, constant coefficient, the
number of control points and degree of polynomial repectively.

UN (x) =

N∑
j=1

λjφ(∥x− xj∥) = ΦT (x)λ, x ∈ Ω (8)

where {λj}Nj=1 are the unknown coefficient to be determined, ∥.∥ is Eucludian
norm and ϕ(∥x− xj∥) can be any radial basis function, and

φ(x) = [φ(∥x− x1∥), φ(∥x− x2∥), · · · , φ(∥x− xN∥)]T .

By applying the interpolation criteria, the cofficient {λj}Nj=1 is discovered.

UN (xj) = U(xj), j = 1, · · · , N. (9)

and we obtain a linear system as follow:

Aλ = U (10)

where

λ =
[
λ1 λ2 · · · λN

]T
, U =

[
U(x1) U(x2) · · · U(xN )

]T
and (11)

A =


φ(∥x1 − x1∥) φ(∥x1 − x2∥) · · · φ(∥x1 − xN∥)
φ(∥x2 − x1∥) φ(∥x2 − x2∥) · · · φ(∥x2 − xN∥)

...
...

...
φ(∥xN − x1∥) φ(∥xN − x2∥) · · · φ(∥xN − xN∥)

 (12)

from (8) and (10) we can write

UN (x) = ϕT (x)A−1U = D(x)U (13)

where D(x) = ϕT (x)A−1.
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3 RBF partition of unity method

Let {Ωi}Mi=1 be an open covering of an open set Ω i.e., Ω ⊆ ∪M
i=1Ωi. The RBF

partition of unity method is a local method based on subdividing the domain
Ω on M subdomains Ω1, . . . , ΩM called patches.
Now, we define a partition of unity {ωi}Mi=1 subordinated to the covering
{Ωi}Mi=1 such that

M∑
i=1

ωi(x) = 1, x ∈ Ω, (14)

where the weight function ωi : Ωi → R is compactly supported, nonnegative
and continuous with supp(ωi ⊆ Ωi).
We create a local RBF interpolant of the type γi

u : Ωi → R for each subdomain.

γi
u =

Ni∑
j=1

λi
jϕ(∥x− xi

j∥), (15)

In here, Ni is the number of collocation points in Ωi. So, over the entire domain
Ω, the global RBF-PUM interpolant is defined as

γu(x) =

M∑
i=1

ωi(x)γ
i
u =

M∑
i=1

ωi(x)

Ni∑
j=1

λi
jϕ(∥x− xi

j∥), x ∈ Ω. (16)

The partition of unity functions ωi can be constructed using shepard method
[32] given by

ωi(x) =
ϕi(x)∑M

k=1 ϕk(x)
, i = 1, · · · ,M, (17)

where ϕi(x) is compactly supported function with support on Ωi. We have
used the following compactly supported the wendland’s C2 function [35]:

ϕ(r) =

{
(1− r)4(4r + 1), 0 ≤ r ≤ 1

0, r > 1.
(18)

The elements of the open cover of will be chosen as circular patches. Thus, the
Wendland functions will be scaled to get

ϕi(x) = ϕ(
∥x− ci∥

ri
), i = 1, · · · ,M, (19)

where ri and ci are, respectively, the centers and the radial of patches Ωi, i =
1, · · · ,M .
The global interpolant is approximated using the following formulat:

y(x) =

M∑
i=1

ωi(x)γ
i
y, (20)

γi
y = Aiλ̄

i −→ λ̄i = A−1
i γi

y, (21)
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γi
y is a local interpolant on Ωi that defined above. By enforcing the interpola-

tion condition, for global interpolant we have the following form [31]

ȳ(x) =

M∑
i=1

RiWiAiλ̄
i, (22)

where Wi is a diagonal matrix with element ωi(xj) on it and Ai is the local
RBF matrix.
The approximation of the first and second dervative can be obtained respec-
tively:

∂ȳ

∂x
=

M∑
i=1

Ri[(Wi)xAi +Wi(Ai)x]λ̄
i (23)

=

M∑
i=1

Ri[(Wi)xAi +Wi(Ai)x]A
−1
i γi

y (24)

=

M∑
i=1

Ri(Di)xγ
i
y (25)

we construct approximation for second derivative as follow:

∂2ȳ

∂x2
=

M∑
i=1

Ri[(Wi)xxAi + 2(Wi)x(Ai)x +Wi(Ai)xx]λ̄
i (26)

=

M∑
i=1

Ri[(Wi)xxAi + 2(Wi)x(Ai)x +Wi(Ai)xx]A
−1
i γi

y (27)

=

M∑
i=1

Ri(Di)xxγ
i
y (28)

Now, in order to solve the Problem (1) by the partition unity of RBF method,
we refer to its optimality conditions, which are summarized in Equation (7).
According to the Equation (7), it is sufficient to discrete only function w and
its derivatives using Formulas (22), (23) and (26), and then place them in the
Equation (7). In this case we reach a nonlinear equation that can be easily
solved using Newton’s method.

4 Numerical Example

In this section, two examples are provided to clarify and exemplify our theoret-
ical findings as well as the capabilities of the suggested methodology. We take
into account the domain Ω = [0, 1]×[0, 1] for the examples that were provided,
and we also give their precise state and exact adjoint. Assume that A = −∆
as well. We select ν = 10−8 and γ = 10−6 for each of the two examples.
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Example 1 The data for this example are as follows: a = −30, b = 30, ŷ =
sin(2πx)sin(2πy)exp(2x)/6, g = 0 and β = 10−5.
Figure 1 contains numerical solutions of state, control, adjoint and µ functions
with γ = 10−4 in Example 1. Control functions with various γ values are
compared in Figure 2.

Example 2 In this example, the same data as in Example 1 without the control
function boundaries (a = −∞, b = ∞) are considered.
Plots of numerical solution of state, control, adjoint and µ functions with
γ = 10−4 are depicted in Figure 3 for the case where control is not bounded.
Finally, Figure 4 shows plot of all the functions in the control mode without
bound and γ = 0. Table 2 shows ∥y − ŷ∥2 due to various values of N .

Table 2 Compare ∥y − ŷ∥2 for different values of N in Example 1.

N 11 21 31
∥y − ŷ∥2 0.0380 0.0148 0.0133

5 Conclusion

RBFs are a very powerful tool for solving differential equations numerically,
and when they are combined with the unit differentiation method, their ap-
proximation power is increased. For linear elliptic optimal sparse control prob-
lems, we have taken into consideration a partition of unity approach in con-
junction with an RBF method in our study. To the best of our knowledge,
this is the first time that radial basis functions are used to solve a sparse
optimal control problem. The objective functional includes the conventional
L2-regularization term in addition to the well-known L1 -norm of the control.
Our numerical studies have shown that the suggested technique can capture
spatio-temporal sparsity. Future research will conduct a thorough convergence
and error analysis of our partition unity of RBF approach for such optimal
sparse control problems.
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adjoint p in Example 1 with γ = 10−4.
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Fig. 3 Optimal control w, corresponding multiplier µ, Optimal state y and corresponding
adjoint p in Example 2 with γ = 10−4.
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Fig. 4 Optimal control w, corresponding multiplier µ, Optimal state y and corresponding
adjoint p in Example 2 with γ = 0.


