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Abstract In the present article, we define the concept of isoclinism in the
context of n-Hom-Lie algebras and investigate some of its properties. Also,
we introduce factor sets on n-Hom-Lie algebras. By restricting these struc-
tures to semisimple linear operators of these structures, it is shown that the
equivalency between isoclinism and isomorphism of two finite-dimensional n-
Hom-Lie algebras just depends on whether one of the operators of them is
onto.
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1 Introduction

In 2002, Hartwig, Larsson, and Silvestrov introduced the notion of Hom-Lie
algebras [14], and outlined some of their fundamental properties which are
studied in mathematical physics, for generalizing the Yang-Barter equation
and braid group representations [24]. A Hom-Lie algebra is an F -vector space
equipped with a bilinear skew-symmetric bracket that satisfies the Jacobi iden-
tity twisted by a linear operator φ. When φ is the identity map, the definition
of Hom-Lie algebras coincides with Lie algebras. The construction of Hom-Lie

M. Sadeghloo
Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran, P.O.
Box 49138–15759.
Tel.: +98-1732254163
E-mail: mina.sadeghloo@yahoo.com

M. Alizadeh Sanati (Corresponding Author)
Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran, P.O.
Box 49138–15759.
E-mail: m.alizadeh@gu.ac.ir



194 Mina Sadeghloo, Mahboubeh Alizadeh Sanati

algebras as a generalization of Lie algebras, leads to the category of Hom-Lie
algebras which is denoted by HomLie [5]. In fact, Hom-Lie algebras can be
considered as the objects of the category HomLie, and its morphisms are Lie
algebra homomorphisms f : (V, φ) −→ (W,ψ) such that f ◦φ = ψ◦f . Hom-Lie
algebras are studied in various areas related to Lie algebras such as semisim-
ple Lie algebras, (co)homology theory, representation theory, universal central
extension, non-abelian tensor product, and simple Lie algebra, respectively in
[16, 27, 1, 9, 25, 7, 8, 18].

Philip Hall, in 1940, introduced group isoclinism [13], and Kay Moneyhun
extended this notion to Lie algebras in 1994 and defined factor sets for Lie al-
gebras. As a result, it was shown that for a given finite dimension, isomorphism
and isoclinism are equivalent [16].

The concept of n-Lie algebras was defined by Filippov in 1987. Also, he
proved all n-Lie algebras of dimension n+ 1 over an algebraically closed field
were classified [12]. Eshrati and Moghaddam presented similar results of iso-
clinism in n-Lie algebras. Utilizing the notion of isoclinism, they proved that
isomorphism and isoclinism are identical on n-Lie algebras of the same finite
dimension [11]. The notion of an n-Hom-Lie algebra which is a generalization
of an n-Lie algebra was introduced in 2011, [2]. Then several aspects of al-
gebraic structures about n-Hom-Lie algebras, for example, the cohomologies,
central extensions and deformations were studied.

The first purpose of this paper, is to provide a definition of isoclinism for
an n-Hom-Lie algebra. In order to investigate its properties, we concentrate
on such an n-Hom-Lie lgebra whose linear map is semisimple linear operator.
Then by defining Hom-stem n-Hom-Lie algebras, we prove that the Hom-
centers of two isoclinic Hom-stem n-Hom-Lie algebras are isomorphic. Finally,
we introduce the notion of factor sets on n-Hom-Lie algebras. As a conclusive
result, we show that the equivalency between isoclinism and isomorphism of
two finite-dimensional n-Hom-Lie algebras with semisimple linear operator,
depend on that only one of the operators of them be onto.

2 Preliminaries

Throughout this paper, we fix F as a ground field and all the vector spaces
are considered over F and linear operators are F -linear operators.

Definition 1 A Lie algebra (V, [−,−]) with a linear operator φ : V −→ V is
called Hom-Lie algebra provided

(i) [x, y] = −[y, x], (skew − symmetry)

(ii) [φ(x), [y, z]] + [φ(y), [z, x]] + [φ(z), [x, y]] = 0, (Hom− Jacobi identity)

for all x, y, z ∈ V .
In this paper, we assume that φ preserves the bracket i.e. φ([x, y]) = [φ(x), φ(y)],
for all x, y ∈ V and it is called Lie algebra endomorphism.
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In the case of φ = idV , Hom-Lie algebras are exactly Lie algebras. A vec-
tor space V endowed with a linear operator φ : V −→ V is called Hom-vector
space. A Hom-vector space (V, φ) with the trivial bracket and any linear opera-
tor φ : V −→ V constructs a Hom-Lie algebra which is called abelian Hom-Lie
algebra.
Example 1 For any Lie algebra V and Lie algebra endomorphism

φ : V −→ V,

we have Hom-Lie algebra (V, φ), if we define the bracket by

[x, y]φ := [φ(x), φ(y)],

for all x, y in V .

Definition 2 A Hom-Lie subalgebra of (V, φ) is a vector subspace W of V,
which is closed under bracket and φ, i.e. [w,w′], φ(w) ∈W , for all w,w′ ∈W.
A Hom-Lie subalgebra (W,φ|) which φ| is restriction of φ to W , is said to be
an ideal if [w, v] ∈ W , for all w ∈ W, v ∈ V. A Hom-Lie algebra (V, φ) is said
to be regular if φ is bijective. Recall that the center of a Lie algebra, Z(V ), is
defined as Z(V ) = {x ∈ V | [x, v] = 0, ∀v ∈ V }.

As a generalization, the set Zφ(V ) = {x ∈ V | [φk(x), v] = 0, ∀v ∈ V, k ≥
0}, where φ0 = idV and φk, k ≥ 1 is the k times composition of φ with itself,
is the largest central ideal of (V, φ) which is called the Hom-center of (V, φ).
Let (V, φ) and (W,ψ) be two Hom-Lie algebras. A linear map f : V −→W is
a Hom-Lie algebra morphism, if f([v1, v2]) = [f(v1), f(v2)], for all v1, v2 ∈ V
and f ◦φ = ψ ◦ f . This property may be more palatable by asserting that the
following diagram is commutative.

V
f−−−−→ W

φ

y yψ
V

f−−−−→ W

In 1987, Filippov introduced the notion of n-Lie algebras which we recall that
in the following definition [12].
Definition 3 Let n ∈ N and n ≥ 2. An n-Lie algebra is a pair (V, [−, · · · ,−])
where V is a vector space and

[−, . . . ,−] : V ⊕ · · · ⊕ V −→ V,

(v1, . . . , vn) 7−→ [v1, . . . , vn],

is a skew-symmetric n-linear map, called n-Lie bracket, that satisfies the fol-
lowing generalized Jacobi identity

[[x1, . . . , xn], y2, . . . , yn] =

n∑
i=1

[x1, . . . , [xi, y2, . . . , yn], . . . , xn].

Clearly, such an algebra becomes an ordinary Lie algebra, when n = 2.
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A generalization of Hom-Lie algebras is the following notion which is defined
by H. Ataguema, A. Makhlouf, and S. Silvestrov in [3].

Definition 4 An n-Hom-Lie algebra is a triple (V, [−, · · · ,−], φ) in which
(V, [−, · · · ,−]) is an n-Lie algebra and φ : V → V is a linear operator such
that for all v1, . . . , vn, w2, . . . , wn ∈ V the following identity holds

[[v1, . . . , vn], φ(w2), . . . , φ(wn)] =
n∑
i=1

[φ(v1), . . . , [vi, w2, . . . , wn], φ(vi+1), . . . , φ(vn)].

It is denoted by (V, φ) briefly.
A subspace W of n-Hom-Lie algebra (V, φ), which is closed under the n-Lie
bracket and φ is called n-Hom-Lie subalgebra. An n-Hom-Lie subalgebra W
of V is called an n-Hom-Lie ideal, provided

[W, V, . . . , V︸ ︷︷ ︸
(n−1)−times

] ⊆W.

The n-Hom-Lie ideal generated by 〈[v1, . . . , vn] | vi ∈ V 〉 is the derived ideal
and denoted by V 2. The Hom-center of n-Hom-Lie algebra (V, φ) is defined as

Zφ(V ) = {x ∈ V : [φk(x), v1, . . . , vn−1] = 0 ∀ vi ∈ V, 1 ≤ i ≤ n− 1, k ≥ 0},

which is an ideal.

Definition 5 Let (V, φ) and (W,ψ) be two n-Hom-Lie algebras. A linear map
f : V −→W is an n-Hom-Lie algebra morphism, if

f([v1, . . . , vn]) = [f(v1), . . . , f(vn)],

for all v1, . . . , vn ∈ V and f ◦ φ = ψ ◦ f .

In our investigation the following definition is fundamental.

Definition 6 Let (V, φ) and (W,ψ) be two n-Hom-Lie algebras and

α : V/Zφ(V ) −→W/Zψ(W ),

and β : V 2 −→W 2 be two Hom-Lie algebra morphisms such that the following
diagram commutes

V/Zφ(V )⊕ · · · ⊕ V/Zφ(V )
ρ−−−−→ V 2

αn

y yβ
W/ψ(W )⊕ · · · ⊕W/ψ(W )

σ−−−−→ W 2

in which ρ and σ are defined by ρ(v1, . . . , vn) = [v1, . . . , vn], for all

vi = vi + Zφ(V ) ∈ V/Zφ(V ),
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and σ(
∼
w1, . . . ,

∼
wn) = [w1, . . . , wn], for all

∼
wi= wi + Zψ(W ) ∈W/Zψ(W ), 1 ⩽ i ⩽ n.

In other words, β([v1, . . . , vn]) = [w1, . . . , wn], whenever wi ∈ α(vi + Zφ(V ))
for i = 1, . . . , n. Then the pair (α, β) is called homoclinism and if they are
both isomorphism, then (α, β) is isoclinism and we write V ∼W .

The proof of the following lemmas are straightforward, so we refer the reader
to [4] for obtaining more information.

Lemma 1 If (V, φ) is an n-Hom-Lie algebra and (W,ψ) is an abelian n-Hom-
Lie algebra, then V ∼ V ⊕W .

Lemma 2 Let N be an ideal of n-Hom-Lie algebra (V, φ). Then we have

(i) N ∩ V 2 = 0 implies V ∼ V/N .
(ii) if (V, φ) is of finite dimension and V ∼ V/N , then N ∩ V 2 = 0.

Lemma 3 If (α, β) is the isoclinism pair between two n-Hom-Lie algebras
(V, φ) and (W,ψ), then

(i) α(a+ Zφ(V )) = β(a) + Zψ(W ).

(ii) β([a, v2, . . . , vn]) = [β(a), w1, . . . , wn], for all a ∈ V 2, vi ∈ V , and

wi ∈ α(vi + Zφ(V )), 2 ≤ i ≤ n.

In 1994, Moneyhun defined the notion of stem Lie algebra, [16]. Now, we define
Hom-stem n-Hom-Lie algebras which some results in the next section are given
based on this concept. An n-Hom-Lie algebra (V, [−, · · · ,−], φ) is called Hom-
stem if Zφ(V ) ⊆ V 2.
The existance of a Hom-stem n-Hom-Lie algebra in each isoclinism family of
n-Hom-Lie algebras, is stated in the following lemma which can be proved
easily.

Lemma 4 Let V be an isoclinism family of n-Hom-Lie algebras. Then
(i) V contains a Hom-stem n-Hom-Lie algebra.
(ii) any finite-dimensional n-Hom-Lie algebra (V, φ) in V is Hom-stem if and
only if (V, φ) has a minimal dimension in V.

The following proposition shows that the Hom-centers of two isoclinic Hom-
stem n-Hom-Lie algebras are isomorphic.

Proposition 1 If (V, φ) and (W,ψ) are two isoclinic Hom-stem n-Hom-Lie
algebras, then Zφ(V ) ∼= Zψ(W ).

Proof Let (α, β) be an isoclinism pair between (V, φ) and (W,ψ). Let v ∈
Zφ(V ) be arbitrary. Since Zφ(V ) ⊆ V 2, by using Lemma 3 (i), we have

α(v + Zφ(V )) = β(v) + Zψ(W ),
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which implies β(v) ∈ Zψ(W ) and thus β(Zφ(V )) ⊆ Zψ(W ).
On the other hand, for z ∈ Zψ(W ), since β is onto, there exists x ∈ V 2 such
that β(x) = z. By Lemma 3 (i), we can write

α(x+ Zφ(V )) = β(x) + Zψ(W ) = z + Zψ(W ) = 0.

Now, since α is an isomorphism we conclude x ∈ Zφ(V ) and so

z = β(x) ∈ β(Zφ(V )), or Zψ(W ) ⊆ β(Zφ(V )).

Hence Zψ(W ) = β(Zφ(V )) and consequently Zφ(V ) ∼= Zψ(W ).

3 Factor sets in n-Hom-Lie algebras

In studying n-Hom-Lie algebras, the concept of factor sets is a basic tool. In
1994, the factor sets in Lie algebras are defined by Moneyhun, [16]. In this
section, we introduce them for n-Hom-Lie algebras and investigate some of
their properties.

Definition 7 Let (V, φ) be a finite-dimensional n-Hom-Lie algebra. The n-
linear map

r :
V

Zφ(V )
⊕ · · · ⊕ V

Zφ(V )
−→ Zφ(V )

is said to be a factor set when

(i) [v1, . . . , vi, . . . , vj , . . . , vn] = 0, for all vk = vk + Zφ(V ) ∈ V/Zφ(V ) with
vi = vj ,

(ii) r([v1, . . . , vn],
∼
φ (w2), . . . ,

∼
φ (wn)) =

n∑
i=1

r(
∼
φ (v1), . . . , [vi, w2, . . . , wn], . . . ,

∼
φ

(vn)),

for all vi, wj ∈ V/Zφ(V ), 1 ≤ i ≤ n, 2 ≤ j ≤ n, where
∼
φ: V/Zφ(V ) −→ V/Zφ(V ),

defined by
∼
φ (v) := φ(v) + Zφ(V ), ∀ v ∈ V/Zφ(V ). The factor set r is said

to be multiplicative if

r(
∼
φ (v1), . . . ,

∼
φ (vn)) = φr(v1, . . . , vn), ∀ vi ∈ V/Zφ(V ), (1 ≤ i ≤ n).

Lemma 5 Let (V, φ) be an n-Hom-Lie algebra and r be a factor set on (V, φ).
Define

R = (Zφ(V ), V
Zφ(V ) , r) =

{
(a, v) : a ∈ Zφ(V ), v ∈ V

Zφ(V )

}
.

Then
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(i) (R,ψ) is an n-Hom-Lie algebra with an n-linear map defined by
[(a1, v1), . . . , (an, vn)] := (r(v1, . . . , vn), [v1, . . . , vn]), (1)

for all (a1, v1), . . . , (an, vn) ∈ R and the linear operator ψ : R −→ R is
given by

ψ((a, v)) := (φ(a),
∼
φ (v)), ∀(a, v) ∈ R. (2)

(ii) ZR := {(a, 0) ∈ R : a ∈ Zφ(V )} ∼= Zφ(V ).

Proof (i) We need to check only the properties of being n-Hom-Lie algebra.
Clearly, the first identity holds. To check the Hom-Jacobi identity, we have[

[(a1, v1), . . . , (an, vn)], ψ(b2, w2), . . . , ψ(bn, wn)
]

(1),(2)
=[

(r(v1, . . . , vn), [v1, . . . , vn]), (φ(b2),
∼
φ (w2)), . . . , (φ(bn),

∼
φ (wn))

]
(1)
=(

r([v1, . . . , vn],
∼
φ (w2), . . . ,

∼
φ (wn)), [[v1, . . . , vn],

∼
φ (w2), . . . ,

∼
φ (wn)]

)
=( n∑

i=1

r(
∼
φ (v1), . . . ,

∼
φ (vi−1), [vi, w2, . . . , wn],

∼
φ (vi+1), . . . ,

∼
φ (vn)),

n∑
i=1

[
∼
φ (v1), . . . ,

∼
φ (vi−1), [vi, w2, . . . , wn],

∼
φ (vi+1), . . . ,

∼
φ (vn)]

)
=

n∑
i=1

(
r(

∼
φ (v1), . . . ,

∼
φ (vi−1), [vi, w2, . . . , wn],

∼
φ (vi+1), . . . ,

∼
φ (vn)),

[
∼
φ (v1), . . . ,

∼
φ (vi−1), [vi, w2, . . . , wn],

∼
φ (vi+1), . . . ,

∼
φ (vn)]

)
(1)
=

n∑
i=1

[
(φ(a1),

∼
φ (v1)), . . . , (φ(ai−1),

∼
φ (vi−1)), [(ai, vi), (b2, w2), . . . , (bn, wn)],

. . . , (φ(ai+1),
∼
φ (vi+1)), . . . , (φ(an),

∼
φ (vn))

]
(2)
=

n∑
i=1

[
ψ(a1, v1), . . . , ψ(ai−1, vi−1), [(ai, vi), (b2, w2), . . . , (bn, wn)],

. . . , ψ(ai+1, vi+1), . . . , ψ(an, vn)
]
,

for all (ai, vi), (bi, wi) ∈ R. Thus (R,ψ) is an n-Hom-Lie algebra.
The proof of (ii) is obvious.
Definition 8 A linear operator φ : V −→ V on a vector space V is semisimple
if every φ-invarient subspace has a complementary φ-invarient subspace.
From now, we suppose that each n-Hom-Lie algebra is equipped with a semisim-
ple linear operator. In special case there exists a complement ideal for the ideal
Zφ(V ).
The following lemma proves the existence of the factor set for a given n-Hom-
Lie algebra and gives the connection between them.
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Lemma 6 For an n-Hom-Lie algebra (V, φ), there exists a factor set r such
that

V ∼= (Zφ(V ),
V

Zφ(V )
, r).

Proof Let K be a complement of Zφ(V ) in V, i.e. V = K ⊕ Zφ(V ). Now, we
define the map θ : V/Zφ(V ) −→ V such that

θ(v) = θ(v + Zφ(V )) = θ(k + a+ Zφ(V )) = k,

when v ∈ V, a ∈ Zφ(V ), k ∈ K. Clearly, θ(v) = v and so
[θ(v1), . . . , θ(vn)]− θ[v1, . . . , vn] ∈ Zφ(V ), (1)

for all v1, . . . , vn ∈ V/Zφ(V ). Now, define

r :
V

Zφ(V )
⊕ · · · ⊕ V

Zφ(V )
−→ Zφ(V )

given by
r(v1, . . . , vn) := [θ(v1), . . . , θ(vn)]− θ[v1, . . . , vn].

First, we have θ
∼
φ= φθ, because

θ
∼
φ (v) = θ

∼
φ (k+a+Zφ(V )) = θ(φ(k)+φ(a)+Zφ(V )) = θ(φ(k)+Zφ(V )) = φ(k),

and
φθ(v) = φ(θ(k + a+ Zφ(V ))) = φ(k),

for all v = k + a ∈ V/Zφ(V ), where k ∈ K, a ∈ Zφ(V ).
To show that r is a factor set, we only need to check the second condition

in definition 7. Suppose that vi, wj ∈ V/Zφ(V ), 1 ≤ i ≤ n and 2 ≤ j ≤ n. By
(1), the elemnet z ∈ Zφ(V ) exists such that

θ[v1, . . . , vn] = [θ(v1), . . . , θ(vn)] + z,

and one can write
r([v1, . . . , vn],

∼
φ (w2), . . . ,

∼
φ (wn)) =

[θ[v1, . . . , vn], θ(
∼
φ (w2)), . . . , θ(

∼
φ (wn))]− θ[[v1, . . . , vn],

∼
φ (w2), . . . ,

∼
φ (wn)] =

[[θ(v1), . . . , θ(vn)] + z, φθ(w2), . . . , φθ(wn)]− θ[[v1, . . . , vn],
∼
φ (w2), . . . ,

∼
φ (wn)]

=

n∑
i=1

[φθ(v1), . . . , φθ(vi−1), [θ(vi), θ(w2), . . . , θ(wn)], φθ(vi+1), . . . , φθ(vn)]

− θ(

n∑
i=1

[
∼
φ (v1), . . . ,

∼
φ (vi−1), [vi, w2, . . . , wn],

∼
φ (vi+1), . . . ,

∼
φ (vn)]) =

n∑
i=1

(
[θ

∼
φ (v1), . . . , θ

∼
φ (vi−1), θ([vi, w2, . . . , wn]), θ

∼
φ (vi+1), . . . , θ

∼
φ (vn)]

− θ([
∼
φ (v1), . . . ,

∼
φ (vi−1), [vi, w2, . . . , wn],

∼
φ (vi+1), . . . ,

∼
φ (vn)])

)
=

n∑
i=1

r(
∼
φ (v1), . . . ,

∼
φ (vi−1), [vi, w2, . . . , wn],

∼
φ (vi+1), . . . ,

∼
φ (vn)).
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Now, we define T : (Zφ(V ), V/Zφ(V ), r) −→ V such that T (a, v) = a + θ(v),
for all a ∈ Zφ(V ), v = v+Zφ(V ) ∈ V/Zφ(V ), k ∈ K. T is well-defined and it is
injective, because if T (a1, v1) = T (a2, v2), in which θ(v1) = k1 and θ(v2) = k2,
then a1 + k1 = a2 + k2 and a1 − a2 = k2 − k1 ∈ Zφ(V ) ∩ K = 0 implies
(a1, v1) = (a2, v2). Also, T is n-Hom-Lie algebra morphism as

T [(a1, v1), . . . , (an, vn)] = T (r(v1, . . . , vn), [v1, . . . , vn])

= r(v1, . . . , vn) + θ([v1, . . . , vn])

= [θ(v1), . . . , θ(v1)]

= [a1 + θ(v1), . . . , an + θ(vn)]

= [T (a1, v1), . . . , T (an, vn)],

for (ai, vi) ∈ R, (1 ≤ i ≤ n). Also, the following diagram commutes

Zφ(V )⊕ V/Zφ(V )
T−−−−→ V

ψ

y yφ
Zφ(V )⊕ V/Zφ(V )

T−−−−→ V

since

φT (a, v) = φ(a+ θ(v)) = φ(a+ k),

Tψ(a, v) = T (φ(a),
∼
φ (v)) = φ(a) + θ(φ(v) + Zφ(V ))

= φ(a) + φ(k) = φ(a+ k),

for all a ∈ Zφ(V ), v = v + Zφ(V ) ∈ V/Zφ(V ), k ∈ K.

The next lemma gives the connection between two isoclinic Hom-stem n-Hom-
Lie algebras.

Lemma 7 Let (V, φ1) be a Hom-stem n-Hom-Lie algebra in an isoclinism
family of n-Hom-Lie algebras C. Then for any Hom-stem n-Hom-Lie algebra
(W,φ2) of C, there exists a factor set r over (V, φ1) such that

W ∼= (Zφ1
(V ), V/Zφ1

(V ), r).

Proof Let (α, β) be an isoclinism pair of n-Hom-Lie algebras (V, φ) and (W,ψ).
Proposition 1 states β(Zφ1

(V )) = Zφ2
(W ). By Lemma 6, there exists a factor

set s such that W ∼= (Zφ2
(W ),W/Zφ2

(W ), s). Now, we define the following
factor set

r : V/Zφ1(V )⊕ · · · ⊕ V/Zφ1(V ) −→ Zφ1(V )

(v1, . . . , vn) 7−→ β−1(s(α(v1), . . . , α(vn))),
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for all vi ∈ V/Zφ1
(V ), 1 ≤ i ≤ n.

Now, by noting that α
∼
φ1=

∼
φ2 α, we show that r is a factor set by the following

way

r
(
[v1, . . . , vn],

∼
φ1 (w2), . . . ,

∼
φ1 (wn)

)
= β−1

(
s
(
α[v1, . . . , vn], α(

∼
φ1 (w2)), . . . , α(

∼
φ1 (wn))

))
= β−1

(
s([α(v1), . . . , α(vn)],

∼
φ2 α(w2), . . . ,

∼
φ2 α(wn))

)
= β−1

( n∑
i=1

s(
∼
φ2 α(v1), . . . ,

∼
φ2 α(vi−1), [α(vi), α(w2), . . . , α(wn)],

∼
φ2 α(vi+1), . . . ,

∼
φ2 α(vn))

)
=

n∑
i=1

β−1s(α
∼
φ1 (v1), . . . , α

∼
φ1 (vi−1), α[vi, w2, . . . , wn], α

∼
φ1 (vi+1), . . . , α

∼
φ1 (vn))

=

n∑
i=1

r(
∼
φ1 (v1), . . . ,

∼
φ1 (vi−1), [vi, w2, . . . , wn],

∼
φ1 (vi+1), . . . ,

∼
φ1 (vn)),

for all vi, wj ∈ V/Zφ(V ), 1 ≤ i ≤ n and 2 ≤ j ≤ n. Put

R = (Zφ1
(V ), V/Zφ1

(V ), r),

and
S = (Zφ2

(W ),W/Zφ2
(W ), s).

By Lemma 5, (R,ψ1) and (S, ψ2) are n-Hom-Lie algebras.
We define η : R −→ S given by η(a, v) = (β(a), α(v)). Clearly, η is a well-
defined bijection and also,

η[(a1, v1), . . . , (an, vn)] = η(r(v1, . . . , vn), [v1, . . . , vn])

=
(
β(r(v1, . . . , vn)), α([v1, . . . , vn])

)
=

(
s(α(v1), . . . , α(vn)), [α(v1), . . . , α(vn)]

)
= [(β(a1), α(v1)), . . . , (β(an), α(vn))]

= [η(a1, v1), . . . , η(an, vn)],

for all a ∈ Zφ(V ), v ∈ V/Zφ(V ). Also, the following diagram is commutative

R
η−−−−→ S

ψ1

y yψ2

R
η−−−−→ S
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because βφ1 = φ2β and α
∼
φ1=

∼
φ2 α implies

ηψ1(a, v) = η(φ1(a),
∼
φ1 (v)) = (βφ1(a), α

∼
φ1 (v)),

ψ2η(a, v) = ψ2(β(a), α(v)) = (φ2β(a),
∼
φ2 α(v)),

for all a ∈ Zφ(V ), v ∈ V/Zφ(V ). So η is our desired isomorphism and R ∼= S.

Lemma 8 Let (V, φ) be an n-Hom-Lie algebra, r and s be two multiplicative
factor sets over (V, φ). Assume that

R = (Zφ(V ),
V

Zφ(V )
, r), ZR = {(a, 0) ∈ R : a ∈ Zφ(V )}

and
S = (Zφ(V ),

V

Zφ(V )
, s), ZS = {(a, 0) ∈ S : a ∈ Zφ(V )}.

If η is an isomorphism from R to S satisfying η(ZR) = ZS, then the restrictions
of η on V/Zφ(V ) and Zφ(V ) define the automorphisms µ ∈ Aut(V/Zφ(V ))
and ν ∈ Aut(Zφ(V )), respectively.

Proof By Lemma 5, (R,ψ) and (S, ψ) are n-Hom-Lie algebras, so we have n-
Hom-Lie algebras R/ZR and S/ZS and since η is isomorphism and η(ZR) =
ZS , thus η induces η : (R/ZR, ψ1) −→ (S/ZS , ψ2) by (a, v) +ZR 7−→ η(a, v) +
ZS is an isomorphism in which ψ1 : R/ZR −→ R/ZR and ψ2 : S/ZS −→ S/ZS
are linear maps defined by ψ1((a, v) + ZR) = ψ(a, v) + ZR and ψ2((a, v) +
ZS) = ψ(a, v) + ZS , for (a, v) ∈ R/ZR, respectively. Consider σ1 and σ2 as
two projection maps in the following diagram given by σ1(v) = (0, v) + ZR
and σ2(v) = (0, v) + ZS , for v ∈ V/Zφ(V ). Now, we define µ such that the
following diagram commutes.

V/Zφ(V )
µ−−−−→ V/Zφ(V )

σ1

y yσ2

R/Z(R)
η̄−−−−→ S/Z(S)

where η(0, v)+ZS = (0, µ(v))+ZS , for all v ∈ V/Zφ(V ). We prove µ
∼
φ=

∼
φ µ;

For each v ∈ V, v ∈ V/Zφ(V ), one can write

(0, µ
∼
φ (v)) + ZS = η(0,

∼
φ (v)) + ZS = ηψ(0, v) + ZS .

On the other hand, if η(0, v)− (0, µ(v)) = t, for some t ∈ ZS , then ψ(t) ∈ ZS
and so

(0,
∼
φ µ(v)) + ZS = ψ(0, µ(v)) + ZS = ψ(η(0, v) + t) + ZS

= ψη(0, v) + ψ(v) + ZS = ψη(0, v) + ZS ,
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Since ηψ = ψη, we have (0, µ
∼
φ (v))+ZS = (0,

∼
φ µ(v))+ZS . By the definition,

σ2(µ
∼
φ (v)) = σ2(

∼
φ µ(v)), and surjectivity of σ2 implies µ

∼
φ (v) =

∼
φ µ(v). Also,

(0, µ([v1, . . . , vn])) + ZS = η(0, [v1, . . . , vn]) + ZS

= η([(0, v1), . . . , (0, vn)]) + ZS

= [η(0, v1), . . . , η(0, vn)] + ZS

= [η(0, v1) + ZS , . . . , η(0, vn) + ZS ]

= [(0, µ(v1)) + ZS , . . . , (0, µ(vn)) + ZS ]

= [(0, µ(v1)), . . . , (0, µ(vn))] + ZS

= (0, [µ(v1), . . . , µ(vn)]),

for vi ∈ V/Zφ(V ), 1 ≤ i ≤ n. Hence µ([v1, . . . , vn]) = [µ(v1), . . . , µ(vn)] and
µ is an automorphism i.e. µ ∈ Aut(V/Zφ(V )). Now define ν such that the
following diagram is commutative

Zφ(V )
ν−−−−→ Zφ(V )

σ̄1

y yσ̄2

ZR
µ̃−−−−→ ZS

where σ1 and σ2 are projection maps and η(a, 0) = (ν(a), 0), for all a ∈ Zφ(V ).
Similarly, one can easily check that ν is automorphism.

Lemma 9 Let (V, φ) be an n-Hom-Lie algebra and (R,ψ), (S, ψ), ZR and ZS
be as in Lemma 8.

(i) Consider η : R −→ S is a Hom-Lie algebra isomorphism such that η(ZR) =
ZS. Let µ ∈ Aut(V/Zφ(V )) and ν ∈ Aut(Zφ(V )) be the automorphisms
induced by η. Then there exists a linear map γ : V/Zφ(V ) −→ Zφ(V ) such
that

ν(r(v1, . . . , vn)) + γ[v1, . . . , vn] = s(µ(v1), . . . , µ(vn)).

(ii) If µ ∈ Aut(V/Zφ(V )) and ν ∈ Aut(Zφ(V )) and δ : V/Zφ(V ) −→ Zφ(V ) is
a linear map such that

ν(r(v1, . . . , vn)) + δ[v1, . . . , vn] = s(µ(v1), . . . , µ(vn)), δ
∼
φ= φδ,

then there exists an isomorphism η : R −→ S which is induced by µ and ν
satsfying η(ZR) = ZS .

Proof (i) For all a ∈ Zφ(V ) and v ∈ V/Zφ(V ) we have η(a, 0) = (ν(a), 0) and
η(0, v) + ZS = (0, µ(v)) + ZS . Hence

η(0, v)− (0, µ(v)) ∈ ZS ⇒ η(0, v)− (0, µ(v)) = (av, 0),
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for some av ∈ Zφ(V ). Now, define the map γ : V/Zφ(V ) −→ Zφ(V ) such that
γ(v) = av, for all v = v + Zφ(V ) ∈ V/Zφ(V ). It is a well-defined linear map
and we have

η(a, v) = η(a, 0) + η(0, v)

= (ν(a), 0) + (0, µ(v)) + (γ(v), 0)

= (ν(a) + γ(v), µ(v)).

Hence,

η[(0, v1), . . . , (0, vn)] = [η(0, v1), . . . , η(0, vn)]

= [(γ(v1), µ(v1)), . . . , (γ(vn), µ(vn))]

= (s(µ(v1), . . . , µ(vn)), [µ(v1), . . . , µ(vn)]).

On the other hand

η[(0, v1), . . . , (0, vn)] = η(r(v1, . . . , vn), [v1, . . . , vn])

= ν(r(v1, . . . , vn)) + γ[v1, . . . , vn],

so
ν(r(v1, . . . , vn)) + γ[v1, . . . , vn] = s(µ(v1), . . . , µ(vn)).

(ii) We only check that the following diagram commutes, in which η : R −→ S
is defined by η(a, v) = (ν(a) + δ(v), µ(v)),

R
η−−−−→ S

ψ

y yψ
R

η−−−−→ S

ηψ(a, v) = η(φ(a),
∼
φ (v)) = (νφ(a) + δ

∼
φ (v), µ

∼
φ (v)),

ψη(a, v) = ψ(ν(a) + γ(v), µ(v)) = (φν(a) + φδ(v),
∼
φ µ(v)).

Since µ and ν are isomorphisms such that δ
∼
φ= φδ, φν = νφ and µ

∼
φ=

∼
φ µ,

one concludes ηψ = ψη.

The following theorem plays a major role which leads us to deduce the main
theorems of this section.

Theorem 1 Let (V, φ1) and (W,φ2) be two finite-dimensional Hom-stem n-
Hom-Lie algebras and φ1 be onto. Then V ∼W if and only if V ∼=W .

Proof Suppose that V ∼W . By Lemmas 6 and 7,

V ∼= (Zφ1
(V ), V/Zφ1

(V ), r) = R,

and also
W ∼= (Zφ2(W ),W/Zφ2(W ), s) = S.
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Now, let (α, β) be isoclinism pair between the n-Hom-Lie algebras (R,ψ1) and
(S, ψ2). Certainly ZR = Z(R) and ZS = Z(S). Let the map µ ∈ Aut(V/Zφ1

(V ))
is defined by

α((0, v) + ZR) = (0, µ(v)) + ZS ,

for all v ∈ V/Zφ1
(V ).

Also, ν ∈ Aut(Zφ1
(V )) is the map defined by β(a, 0) = (ν(a), 0), for all

a ∈ Zφ1(V ). Let us consider the following commutative diagram

V/Zφ1(V )× · · · × V/Zφ1(V )
ρ−−−−→ R/ZR × · · · ×R/ZR

θ−−−−→ R2

µn

y yαn

yβ
V/Zφ1

(V )× · · · × V/Zφ1
(V )

σ−−−−→ S/ZS × · · · × S/ZS
ξ−−−−→ S2

in which

ρ(v1, . . . , vn) = ((0, v1) + ZR, . . . , (0, vn) + ZR)),

σ(v1, . . . , vn) = ((0, v1) + ZS , . . . , (0, vn) + ZS)),

ξ((a1, v1) + ZS , . . . , (an, vn) + ZS) = [(a1, v1), . . . , (an+1, vn)]

= (s(v1, . . . , vn), [v1, . . . , vn]),

θ((a1, v1) + ZR, . . . , (an, vn) + ZR) = [(a1, v1), . . . , (an, vn)]

= (r(v1, . . . , vn), [v1, . . . , vn]).

We have

βθ((0, v1) + ZR, . . . , (0, vn) + ZR)) = β(r(v1, . . . , vn), [v1, . . . , vn])

= β[(0, v1), . . . , (0, vn)],

and further

ξαn((0, v1) + ZR, . . . , (0, vn) + ZR)) = ξ((0, µ(v1)) + ZS , . . . , (0, µ(vn)) + ZS))

= [(0, µ(v1)), . . . , (0, µ(vn))]

= (s(µ(v1)), . . . , µ(vn)), [µ(v1)), . . . , µ(vn]).

Hence we have β[(0, v1), . . . , (0, vn)] = (s(µ(v1)), . . . , µ(vn)), [µ(v1)), . . . , µ(vn]).
The map δ : (V/Zφ1

(V ))2 −→ Zφ1
(V ) such that

β(0, [v1, . . . , vn]) = (δ([v1, . . . , vn]), t),

where t ∈ V/Zφ1
(V ) is considered. Thus we get

ν(r(v1, . . . , vn)) + δ[v1, . . . , vn] = s(µ(v1), . . . , µ(vn)).

To apply Lemma 9, we may extend δ to V/Zφ1(V ) by assuming that it vanishes
on the complement of (V/Zφ1

(V ))2 in V/Zφ1
(V ). Now, we need only to show

δ
∼
φ1= φ1δ. For all v1, . . . , vn, t ∈ V/Zφ1

(V )

δ(
∼
φ1 [v1, . . . , vn], t) = β(0,

∼
φ1 ([v1, . . . , vn]) = βψ1(0, [v1, . . . , vn]).
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Further ∼
φ1 is onto, i.e. ∼

φ1 (t′) = t for some t′ ∈ V/Zφ1
(V ). So

(φ1δ[v1, . . . , vn], t) = (φ1δ[v1, . . . , vn],
∼
φ1 (t′))

= ψ1(δ[v1, . . . , vn], t
′)

= ψ1β(0, [v1, . . . , vn]).

Hence φ1δ(v) = δ
∼
φ1 (v), for all v ∈ V 2. Consider V = V 2 ⊕ U and define

δ to be zero in U . Then φ1δ(u) = 0, for all u ∈ U . Since φ1 is semisimple,
φ1(u) ∈ U , thus

δ
∼
φ1 (u) = δ(φ1(u) + Zφ1

(V )) = 0.

Consequently, φ1δ = δ
∼
φ1 and now we can use Lemma 9 to obtain the result.

Theorem 2 Let C be an isoclinism family of finite-dimensional regular n-
Hom-Lie algebras. Then any V ∈ C can be expressed as V = T ⊕ A, where T
is a Hom-stem n-Hom-Lie algebra and A is some finite-dimensional abelian
n-Hom-Lie algebra.

Theorem 3 Let (V, φ1) and (W,φ2) be two n-Hom-Lie algebras with same
dimension. Then V ∼W if and only if V ∼=W .

The following example shows that the above theorem does not valid for two
different dimension n-Hom-Lie algebras.

Example 2 Let (V, φ) be an (n+1)-dimensional n-Hom-Lie algebra over a field
F defined by

[e2, . . . , en+1] = e1, [e1, e3, . . . , en+1] = e2,

where {e1, . . . , en+1} is a basis for V and all other commutator relations are
zero. The linear map φ is defined as follows

φ(e1) = e1, φ(e2i) = e2i+1, φ(e2i+1) = e2i, 1 ≤ i ≤ n.

Then V 2 = 〈e1, e2〉 and Zφ(V ) = 0 and hence V/Zφ(V ) ∼= V.
Now, let (W,ψ) be an (n + 2)-dimensional n-Hom-Lie algebra with the basis
{e1, . . . , en+2} and the commutator relations are defined by

[e2, . . . , en+1] = e1, [e1, e3, . . . , en+1] = e2,

and all other commutator relations are zero. Also, the linear map is given by

ψ(e1) = e1, ψ(en+2) = en+2, ψ(e2i) = e2i+1, ψ(e2i+1) = e2i,

for 1 ≤ i ≤ n/2. Then W 2 = 〈e1, e2〉 and Zψ(W ) = 〈en+2〉 and so

W/Zψ(W ) = 〈e1, . . . , en+1〉,

where ei = ei+Zψ(W ). We conclude that V 2 ∼=W 2 and V/Zφ(V ) ∼=W/Zψ(W )
and hence V ∼W while dim(V ) 6= dim(W ).
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