Some Results on Isologism of Pairs of Groups

Homayoon Arabyani

Received: 13 October 2022 / Accepted: 25 May 2023

Abstract Let V be a variety of groups defined by a set V of laws. Then the verbal subgroup and the marginal subgroup of a group *G* associated with the variety are denoted by $V(G)$ and $V^*(G)$, respectively. Let (N, G) be a pair of groups in which *N* is a normal subgroup of *G*. In the paper, we study the lower and upper *V*-marginal series of the pair (N, G) and prove some properties of isologism of pairs of groups.

Keywords Pair of groups *·* Variety *·* Isologism

Mathematics Subject Classification (2010) 20D15 *·* 20E99

1 Introduction and preliminary

Let F be a free group freely generated by a countable set $\{x_1, x_2, \ldots\}$. Let *V* be a variety of groups defined by a subset *V* of F . Then for any group G we assume that the reader is familiar with the notions of the verbal subgroup $V(G)$ and the marginal subgroup $V^*(G)$, associated with the variety of groups. (see [6,7] for more information).

Let (N, G) be a pair of groups in which N is a normal subgroup of G , then we define $[NV^*G]$ to be the subgroup of *G* generated by the following set

 $\{v(g_1, g_2, \ldots, g_i n, \ldots, g_r)v(g_1, g_2, \ldots, g_r)^{-1} \mid 1 \leq i \leq r, v \in V, g_i \in G, n \in N\}.$

H. Arabyani

Department of Mathematics, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran. Tel.: +123-45-678910

Fax: +123-45-678910

E-mail: arabyani.h@gmail.com, h.arabyani@iau-neyshabur.ac.ir

We can see that $[NV^*G]$ is the smallest normal subgroup *T* of *G* contained in *N* such that N/T is contained in $V^*(\frac{G}{T})$ $\frac{a}{T}$). Also, we define

$$
V^*(N, G) = \{ n \in N \mid v(g_1, g_2, \dots, g_i n, \dots, g_r) = v(g_1, \dots, g_r),
$$

$$
\forall v \in V, g_i \in G, 1 \le i \le r \}.
$$

In particular, if $N = G$, then $V(N, G) = V(G)$ and $V^*(N, G) = V^*(G)$ are ordinary verbal and marginal subgroups of *G*. (see [5,8] for more information).

In 1976, Leedham-Green and McKay [6] introduced the notion of the product of varieties as follows.

Let V and W be varieties of groups defined by the set of laws V and W , respectively. The product $\mathcal{U} = \mathcal{V} * \mathcal{W}$ is the variety of all groups *G* such that *V*(*G*) \subseteq *W*^{*}(*G*). Also, the varbal subgroup of the product *U* = *V* ∗ *W* is $U(G) = [V(G)W^*G]$. (see [4] for more information).

The notion of $\mathcal{V} \vee \mathcal{W}$ is the variety whose set of laws are in $V \cap W$ and also, $[V, W]$ consists of all groups whose *V*-subgroups centralize *W*-subgroups. Moreover, $V\mathcal{W}$ is the variety of groups such that are extensions of a group in V by a group in W .

Let (N, G) and (M, H) be pairs of groups. An homomorphism from (N, G) to (M, H) is a homomorphism $f : G \to H$ such that $f(N) \subseteq M$. We say that (N, G) and (M, H) are isomorphic and write $(N, G) \simeq (M, H)$, if f is an isomorphism and $f(N) = M$. Let (N, G) and (M, H) be two pairs of groups and V be a variety of groups defined by the set of laws V . An V isologism between (N, G) and (M, H) is a pair of isomorphism (α, β) with $\alpha: G/V^*(N, G) \to H/V^*(M, H)$ and $\beta: V(N, G) \to V(M, H)$, such that

$$
\alpha(N/V^*(N,G)) = M/V^*(M,H),
$$

and for every $v \in V$, $n \in N$ and $g_1, \ldots, g_r \in G$

$$
\beta(v(g_1,\dots,g_in,\dots,g_r)v(g_1,\dots,g_r)^{-1}) =
$$

$$
v(h_1,\dots,h_im,\dots,h_r)v(h_1,\dots,h_r)^{-1},
$$

whenever, $h_i \in \alpha(g_i V^*(N, G))$ and $m \in \alpha(nV^*(N, G))$. We say that (N, G) and (M, H) are *V*-isologic, if there exists an *V*-isologism between them. In this case we write $(N, G) \sim_{\mathcal{V}} (M, H)$.

If V is the variety of abelian groups or nilpotent groups of class at most n , then *V*-isologism coincides with isoclinism and *n*-isoclinism between pairs of groups. In addition, if $N = G$ and $M = H$, then *V*-isologism between two pairs of groups is an *V*-isologism between *G* and *H*. (see [1–3] for more information).

2 The main results

In this section, we generalize some properties of isologism of groups to a pair of groups. First of all, we discuss some preliminaries which are needed for the proof of our results. The following lemma is similar to Lemma 1 of [2].

Lemma 1 *If* (N, G) *is a pair of groups and* $M \leq G$ *such that* $M \leq N$ *, then* $V(V^*(N, G)) = \langle e \rangle$ *and* $V^*\left(\frac{N}{V(N)}\right)$ $\frac{N}{V(N, G)}, \frac{G}{V(N, G)}$ $V(N, G)$ $= \frac{N}{\frac{V(N)}{N}}$ $\frac{N}{V(N, G)},$ *(b)* $V(N, G) = \langle e \rangle$ *if and only if* $V^*(N, G) = N$ *if and only if* $G \in V$, *(c)* $[KV^*G] = \langle e \rangle$ *if and only if* $K \subseteq V^*(N, G)$ *, (d)* $V\left(\frac{N}{N}\right)$ $\frac{N}{K}, \frac{G}{K}$ *K* $= \frac{V(N, G)K}{K}$ $\frac{N}{K}$ and V^* $\left(\frac{N}{K}\right)$ $\frac{N}{K}, \frac{G}{K}$ *K* $\Big)$ ⊇ $\frac{V^*(N,G)K}{V}$ $\frac{K}{K}$, (e) $V(K)$ ⊂ $[KV^*G]$ ⊂ $K ∩ V(N, G)$, *(f) If* $K \cap V(N, G) = \langle e \rangle$, then $K \subseteq V^*(N, G)$ and $V^* \left(\frac{N}{K} \right)$ $\frac{N}{K}, \frac{G}{K}$ *K* $= \frac{V^*(N, G)}{K}$ $\frac{X^{(1)}, Y^{(2)}}{K}$ *(g) If* $[K, G] \subseteq V^*(N, G)$ *, then* $[V(N, G), K] = \langle e \rangle$ *. In particular*

$$
[V(N, G), V^*(N, G)] = \langle e \rangle.
$$

Theorem 1 *([2], Theorem 2)* Let (N_1, G_1) and (N_2, G_2) be pairs of groups. *Then* $(N_1, G_1) \sim_V (N_2, G_2)$ *if and only if there exists a pair* (N, G) *of groups and there exists normal subgroups* M_1 *and* M_2 *of* G *with* $M_1 \subseteq N$ *and* $M_2 \subseteq N$ *such that* $(N_1, G_1) \simeq \left(\frac{N_1}{M}\right)$ $\frac{N}{M_1}, \frac{G}{M_1}$ *M*¹ $\bigg), (N_2, G_2) \simeq \left(\frac{N}{M}\right)$ $\frac{N}{M_2}, \frac{G}{M_2}$ *M*²) *, and* $(N_1, G_1) \sim$ ^{*y*} (*N, G*) \sim *y* (*N*₂*, G*₂)*.*

Lemma 2 *([2] , Lemma 5) Let* (*N, G*) *be a pair of groups. If M is a normal subgroup of* G *with* $M \leq N$ *and* H *is a subgroup of* G *, then*

 (a) (*H* ∩ *N*, *H*) ∼ γ ((*H* ∩ *N*)*V*^{*}(*N, G*), *HV*^{*}(*N, G*)). *In particular if*

$$
G = HV^*(N, G),
$$

then $(H \cap N, H) \sim_V (N, G)$ *. Conversely, if* $\frac{H}{V*(H \cap N, H)}$ satisfies the ascend*ing chain condition on normal subgroups and* $(H \cap N, H) \sim_V (N, G)$ *, then* $G = HV^*(N, G)$.

(b)
$$
(N/M, G/M) \sim_V (N/M \cap V(N, G), G/M \cap V(N, G))
$$
. In particular if

$$
M \cap V(N, G) = \langle e \rangle,
$$

then $(N, G) \sim_V (\frac{N}{M}, \frac{G}{M})$ *. Conversely, if* $V(N, G)$ *satisfies the ascending chain condition on normal subgroups and* $(N, G) \sim_{\mathcal{V}} (\frac{N}{M}, \frac{G}{M})$, then

$$
M \cap V(N, G) = \langle e \rangle.
$$

Definition 1 Let (N, G) be a pair of groups, V and W are two varieties of groups defined by the sets of laws *V* and *W*, respectively, then the product $V * W$ is the variety of all groups *G* such that $V(N, G) \subseteq W^*(N, G)$.

Lemma 3 *Let* V *and* W *be varieties of groups and put* $U = V * W$ *. Then the following are equivalent.*

(a) For any pair of groups (N, G) :

$$
\frac{U^*(N,G)}{W^*(N,G)} \subseteq V^*\left(\frac{N}{W^*(N,G)}, \frac{G}{W^*(N,G)}\right),\,
$$

(b) For any pair of groups (N, G) and $K \leq G$:

$$
[[KV^*G]W^*G] \subseteq [KU^*G].
$$

Moreover, the equality sign holds in (*a*) *if and only if the equality sign holds in* (*b*)*.*

Proof (a)
$$
\Rightarrow
$$
 (b): Let $\overline{K} = \frac{K}{[KU^*G]}$. So, $\overline{K} \subseteq U^* \left(\frac{N}{K}, \frac{G}{K}\right)$. We can see that

$$
[\overline{K}W^* \left(\frac{N}{K}, \frac{G}{K}\right) V^* \frac{G}{K}] \subseteq W^* \left(\frac{N}{K}, \frac{G}{K}\right).
$$

Hence, by using Lemma 1(c) we have $\left| \sqrt{\overline{K}}V^*\overline{G} \right|W^*\overline{G} = \langle \overline{e} \rangle$ *and so,*

$$
[[KV^*G]W^*G] \subseteq [KU^*G].
$$

 (b) \Rightarrow (a) *: Now, put* $K = U^*(N, G)$ *. By using Lemma 1(c) we have*

$$
\frac{U^*(N,G)}{W^*(N,G)}\subseteq V^*\left(\frac{N}{W^*(N,G)},\frac{G}{W^*(N,G)}\right)
$$

.

.

Now, assume that for any pair of group (*N, G*)*, we have*

$$
\frac{U^*(N, G)}{W^*(N, G)} = V^*\left(\frac{N}{W^*(N, G)}, \frac{G}{W^*(N, G)}\right)
$$

Suppose that $K \trianglelefteq G$ *. By the first part of the proof* $[[KV^*G]W^*G] \subseteq [KU^*G]$ *.* $Put\ \overline{K} = \frac{K}{\frac{K}{\prod K K K \cdot G}}$ $\frac{1}{[[KV*G]W*G]}$ *. Then*

$$
\frac{\overline{K}W^*(N,G)}{W^*(N,G)} \subseteq V^* \left(\frac{\frac{N}{K}}{W^*(\frac{N}{K}, \frac{G}{K})}, \frac{\frac{G}{K}}{W^*(\frac{N}{K}, \frac{G}{K})} \right).
$$

 $Now, \left[\overline{K}U^*\frac{G}{N}\right] = \langle \overline{e} \rangle$ *. So,* $[KU^*G] \subseteq [[NV^*G]W^*G]$ *. Finally, assume that*

$$
[[KV^*G]W^*G] = [KU^*G].
$$

Put

$$
V^* \left(\frac{N}{W^*(N,G)}, \frac{G}{W^*(N,G)} \right) = \frac{M}{W^*(N,G)}.
$$

Then $M \trianglelefteq G$ *and* $[MV^*G] \subseteq W^*(N, G)$ *. Hence, by using lemma* $1(c)$

$$
[[MV^*G]W^*G] = \langle e \rangle.
$$

On the other hand, $[[MV^*G]W^*G] = [MU^*G]$ *. Thus,* $M \subseteq U^*(N, G)$ *. Therefore,*

$$
V^* \left(\frac{N}{W^*(N, G)}, \frac{G}{W^*(N, G)} \right) \subseteq \frac{U^*(N, G)}{W^*(N, G)},
$$

and so, the equality sign holds in (*b*)*.*

Theorem 2 *Let* (N, G) *be a pair of groups,* V, W *are two varieties of groups defined by the sets of laws V and W and put* $\mathcal{U} = \mathcal{V} * \mathcal{W}$ *. Then for any pair of groups* (*N, G*) *the following hold.*

(a)
$$
W^*(N, G) \subseteq U^*(N, G)
$$
.
\n(b) $\frac{U^*(N, G)}{W^*(N, G)} \subseteq V^*\left(\frac{N}{W^*(N, G)}, \frac{G}{W^*(N, G)}\right) \subseteq U^*\left(\frac{N}{W^*(N, G)}, \frac{G}{W^*(N, G)}\right)$.

Proof If (N, G) *is a pair of groups such that* $G \in W$ *, then* $N = W^*(N, G)$ *. Also,* $V(N, G) \subseteq W^*(N, G) = N$. Thus, $G \in \mathcal{U}$. Hence, $W \subseteq \mathcal{U}$. It fol*lows that* $W^*(N, G) \subseteq U^*(N, G)$ *, which proves* (*a*)*. Now, if* $G \in V$ *, then* $V(N, G) = \langle e \rangle$ *. So,* $U(N, G) = [V(N, G)W^*G] = \langle e \rangle$ *. Thus,* $G \in \mathcal{U}$ and so, $V \subseteq U$. Now, let $K \subseteq G$, if $v(g_1, g_2, \ldots, g_i n, \ldots, g_r) v(g_1, g_2, \ldots, g_r)^{-1}$ and $w(g_1, g_2, \ldots, g_i n, \ldots, g_s) v(g_1, g_2, \ldots, g_s)^{-1}$ are words in $V(N, G)$ and $W(N, G),$ *respectively, then, the laws which determine U are given by*

$$
w(g_1,g_2,\ldots,g_iv(g_{s+1},\ldots,g_{s+r}),\ldots,g_jn,\ldots,g_s)w(g_1,\ldots,g_s)^{-1}
$$

where, $1 \leq i \leq s$, $q_i \in G$ *and* $n \in N$. A generating element of $[[KV^*G]W^*G]$ *is of the following form*

 $w(g_1, \ldots, g_i v(g_{s+1}, \ldots, g_{s+j} k, \ldots, g_{s+r}) v(g_{s+1}, \ldots, g_{s+r})^{-1}, \ldots, g_s) w(g_1, \ldots, g_s)^{-1},$ (1)

where, $g_1, \ldots, g_{s+r} \in G$, $k \in K$, $1 \leq i \leq s$ and $1 \leq j \leq r$ *. Put*

$$
v = v(g_{s+1}, \ldots, g_{s+r}),
$$

and $v' = v(g_{s+1}, \ldots, g_{s+j}k, \ldots, g_{s+r})$. Then the element in (1) takes form

$$
w(g_1, \ldots, g_i v' v^{-1}, g_{i+1}, \ldots, g_s) w(g_1, \ldots, g_s)^{-1} =
$$

\n
$$
w(g_1, \ldots, g_i v^{-1} vv' v^{-1}, g_{i+1}, \ldots, g_s)
$$

\n
$$
w(g_1, \ldots, g_i v^{-1}, g_{i+1}, \ldots, g_s)^{-1} w(g_1, \ldots, g_i v^{-1}, g_{i+1}, \ldots, g_s) w(g_1, \ldots, g_s)^{-1}
$$

and this is an element of $[KU^*G]$ *. Thus,* $[[KV^*G]W^*G] \subseteq [KU^*G]$ *.*

Corollary 1 *Let* V *and* W *be varieties of groups and put* $U = V * W$ *. Let* $K \trianglelefteq G$ *. Then, the following hold.*

(a) If $K ⊆ U^*(N, G)$ *, then* $[KV^*G] ⊆ W^*(N, G)$ *. (b) If* $K \cap V^*(N, G) = \langle e \rangle$ *, then* $K \cap U^*(N, G) \subseteq V^*(N, G)$ *.* *Proof* (*a*) *If* $K \subseteq U^*(N, G)$ *, then by Lemma 1(c),* $[KU^*G] = \langle e \rangle$ *. By lemma 3 and Theorem 2(b), we get* $[[KV^*G]W^*G] = \langle e \rangle$. Again by Lemma 1(c), $[KV^*G] \subseteq W^*(N, G)$.

(*b*) *We can see that*

$$
[(K \cap U^*(N,G))V^*G] \subseteq K \cap [U^*(N,G)V^*G] \subseteq K \cap W^*(N,G).
$$

Thus, if $K \cap W^*(N, G) = \langle e \rangle$, then by Lemma 1(c) the proof is completed.

Corollary 2 *Let V, W and U be any varieties of groups. Then*

 $V * (W * U) \subseteq (U * W) * U$.

Proof Let $G \in V^*(W^*U)$ *. Put* $T = W^*U$ *. Thus,* $V(N, G) \subseteq T^*(N, G)$ *. Now,* $[V(N, G)W^*G] \subseteq U^*(N, G)$. Thus, $S(N, G) \subseteq U^*(N, G)$, where $S = V^*W$, *as required.*

Corollary 3 *Let* $V \subseteq V_1$ *and* $W \subseteq W_1$ *be varieties of groups. Then the following hold.*

- *(a)* V *∗ W* ⊂ V_1 *∗ W*₁.
- *(b) V ∗ A ⊇ A ∗ V, where A is the variety of all abelian groups.*
- *(c) For any* $m, n \geq 0$, $V * \eta_{m+n} = (V * \eta_m) * \eta_n$, where η_c *is the variety of all nilpotent groups of class at most c.*

Proof (a) *If* $G \in V * W$ *, then* $V_1(N, G) \subseteq V(N, G) \subseteq W^*(N, G) \subseteq W_1(N, G)$. *Thus,* $G \in \mathcal{V}_1 * \mathcal{W}_1$.

- *(b) Let* $G \in \mathcal{A} * \mathcal{V}$ *. Thus,* $[N, G] \subseteq V^*(N, G)$ *. Then* $V(N, G) \subseteq A(N, G)$ *and* $so, G ∈ V * A$ *.*
- *(c)* It is follows from the fact that for any groups *G* and $m, n \geq 0$,

$$
\frac{Z_{m+n}(N,G)}{Z_n(N,G)} = Z_m\left(\frac{N}{Z_n(N,G)}\right).
$$

Proposition 1 *Let V, W and U be varieties of groups. Then the following hold.*

- *(a) V ∨ W ⊆ V ∗ W ⊆ VW.*
- *(b) If* $V \subseteq U * A$ *, then* $V * W \subseteq [U, W]$ *. In particular* $V * W \subseteq [V, W]$ *.*
- *Proof* (a) *By Lemma 1(e), we have* $[V(N, G)W^*G] \subseteq V(N, G) \cap W(N, G)$ *for any pair* (N, G) *of groups. Hence,* $V \vee W \subseteq V * W$ *. Assume that* $G \in V * W$ *. Thus,* $V(N, G) \subseteq W^*(N, G)$ *. By Lemma 1(a), we get* $W(V(N, G)) = \langle e \rangle$ *. So,* $G \in \mathcal{WV}$ *. we conclude that* $V * W \subseteq VW$ *.*
- *(b) Let G ∈ V ∗ W. So, V* (*N, G*) *⊆ W[∗]* (*N, G*)*. By hypothesis*

$$
[U(N,G),N] \subseteq V(N,G),
$$

and so, $[U(N, G), N] ⊆ W[*](N, G)$ *and by Lemma 1(g)*,

$$
[W(N, G), U(N, G)] = \langle e \rangle.
$$

Thus, $G \in [\mathcal{U}, \mathcal{W}]$ *. This implies that* $\mathcal{V} * \mathcal{W} \subseteq [\mathcal{U}, \mathcal{W}]$ *and so,* $\mathcal{V} \subseteq \mathcal{V} * \mathcal{A}$ *. By setting* $U = V$ *, the result is held.*

Let *V* and *W* be varieties of groups and put $\mathcal{U} = \mathcal{V} * \mathcal{W}$. For a pair (N, G) of groups, let *N G*

$$
\Delta_{\mathcal{V},\mathcal{W}}(N,G) = \frac{V^* \left(\frac{N}{W^*(N,G)}, \frac{G}{W^*(N,G)} \right)}{\frac{U^*(N,G)}{W^*(N,G)}}
$$

In other words, Δ *V,W*(*N, G*), measures to what extend the group

$$
V^* \left(\frac{N}{W^*(N, G)}, \frac{G}{W^*(N, G)} \right),
$$

deviates from the group $\frac{U^*(N, G)}{W^*(N, G)}$ $\frac{\sigma}{W^*(N, G)}$, following Lemma 3.

Theorem 3 *Let* V *and* W *be varieties of groups and put* $U = V * W$ *. Assume that* $(N, G) \sim_{\mathcal{U}} (H_1, H_2)$ *. Then* $\Delta_{\mathcal{V}, \mathcal{W}}(N, G) \simeq \Delta_{\mathcal{V}, \mathcal{W}}(K, H)$ *.*

Proof By Theorem 1, we may assume that

$$
(H_1, H_2) = \left(\frac{N}{M}, \frac{G}{M}\right),\,
$$

for some normal subgroup M of G such that $M \leq N$ *and* $M \cap U(N, G) = \langle e \rangle$ *. By Lemma 1(f), we have* $K \subseteq U^*(N, G)$ *and*

$$
U^* \left(\frac{N}{M}, \frac{G}{M} \right) = \frac{U^*(N, G)}{M}.
$$

 $Put W^* \left(\frac{N}{N}\right)$ $\frac{N}{M}, \frac{G}{M}$ *M* $\bigg) = \frac{K}{M}$ $\frac{M}{M}$ such that $K \trianglelefteq G$ and $MW^*(N, G) \subseteq K$ *. Thus,*

$$
\varDelta_{\mathcal{V},\mathcal{W}}(N/M,G/M)=\frac{V^*\left((N/M)/W^*\left(N/M,G/M\right),(G/M)/W^*\left(N/M,G/M\right)\right)}{U^*\left(N/M,G/M\right)/W^*\left(N/M,G/M\right)}
$$

$$
\cong \frac{V^* \left(\frac{N}{W^*(N, G)} / \frac{K}{W^*(N, G)}, \frac{G}{W^*(N, G)} / \frac{K}{W^*(N, G)} \right)}{\frac{U^*(N, G)/W^*(N, G)}{K/W^*(N, G)}}.
$$
\n(2)

W∗(*N, G*)

We have $[KW^*G] \subseteq M$ *and so,*

$$
[(K \cap V(N,G))W^*G] \subseteq [KW^*G] \cap [V(N,G)W^*G] \subseteq M \cap U(N,G) = \langle e \rangle.
$$

Therefore, Lemma 1(c) gives $K \cap V(N,G) \subseteq W^*(N,G)$, where

$$
\frac{K}{W^*(N,G)}\cap V\left(\frac{N}{W^*(N,G)},\frac{G}{W^*(N,G)}\right)=\langle \bar{e}\rangle.
$$

.

An application of Lemma 1(f), again shows that

$$
V^*\Bigg(\frac{N}{W^*(N,G)}/\frac{K}{W^*(N,G)},\frac{G}{W^*(N,G)}/\frac{K}{W^*(N,G)}\Bigg)=\frac{V^*\Big(N/W^*(N,G),G/W^*(N,G)\Big)}{K/V^*(N,G)}.
$$

Now, by (2)*, we obtain* $\Delta_{\mathcal{V},\mathcal{W}}(N,G) \cong \Delta_{\mathcal{V},\mathcal{W}}(N/M,G/M)$ *.*

Theorem 4 *Let* V *and* W *be varieties of groups. Put* $U = V * W$ *. Suppose that* $(N, G) \sim_{\mathcal{U}} (K, H)$ *. Then the following hold.*

 (a) $(N/V^*(N, G), G/V^*(N, G)) \sim_V (K/V^*(K, H), H/V^*(K, H)).$ *(b)* $V(N, G) \sim_W V(K, H)$.

Proof (*a*) *Put* $K/M = V^*(N/M, G/M)$ *, so that* $K \leq G$ *and*

 $MW^*(N, G) \subseteq K$.

Now, we show that $K \cap V(N, G) \subseteq W^*(N, G)$ *. Indeed it implies that*

$$
(K \cap V(N,G))W^*(N,G) = W^*(N,G),
$$

whence

$$
K/W^*(N,G) \cap V(N/W^*(N,G), G/W^*(N,G)) = \langle \bar{e} \rangle,
$$

by Lemma 1(d). Thus, by Lemma 2(b) we have

$$
(N/W^*(N, G), G/W^*(N, G)) \sim_{\mathcal{V}} (N/W^*(N, G), G/W^*(N, G))/(K/W^*(N, G))
$$

\n
$$
\cong N/K
$$

\n
$$
\cong (N/M)/(K/M)
$$

\n
$$
\cong (N/M)/W^*(N/M, G/M).
$$

which is precisely what we want to prove. certainly

 $[(K \cap V(N,G))W^*G] \subset [KW^*G] \cap [V(N,G)W^*G] \subset M \cap U(N,G) = \langle e \rangle.$

So, indeed by Lemma 1(c), we have $K \cap V(N, G) \subseteq W^*(N, G)$ *.*

(b) We show that

$$
V(N, G) \sim_{\mathcal{W}} V(N/M, G/M) = V(N, G)K/K \cong V(N, G)/(M \cap V(N, G)).
$$

Now, we have $M \cap V(N, G) \cap W(V(N, G)) = M \cap W(V(N, G))$ *. So, by Proposition 1(a), we get* $U(N, G) \supseteq W(V(N, G))$ *. Since,*

$$
M \cap U(N, G) = \langle e \rangle,
$$

we obtain $M \cap W(V(N, G)) = \langle e \rangle$ *.*

Corollary 4 *Let* $n \geq 0$ *and* $(N, G)_{\sim} (K, H)$ *. Then for each* $i \in \{0, \ldots, n\}$ *, the following hold*

 (a) $(N/Z_i(N, G), G/Z_i(N, G))$ _{*n*−*i*} $(K/Z_i(K, H), H/Z_i(K, H)).$ (b) $[N, {}_{i}G]_{n-i}[K, {}_{i}H]$.

Proof By Corollary 3(*c*), we have $\eta_i * \eta_{n-i} = \eta_n = \eta_{n-i} * \eta_i$ for any *i* with $0 \leq i \leq n$. Thus, the result follows from Theorem 4.

Lemma 4 *Let V and W be varieties of group. Then the following are equivalent*

(a) $V ⊂ W$ *.*

(b) For any two pairs of groups (N, G) *and* (K, H) *,* $(N, G)_{\widetilde{\mathcal{V}}}(K, H)$ *implies* (N, G) ^γ^{*W*} (K, H) .

Proof (*a*) \Rightarrow (*b*)*:* Let $(N, G)_{\gamma}(K, H)$ *. We may assume by Theorem 1 that* $(K, H) \cong (N/M, G/M)$ *for some* $M ⊆ G$ *with* $M ∩ V(N, G) = e$ *. As* $V ⊆ W$ *, we have* $W(N, G) \subseteq V(N, G)$ *, whence* $M ∩ W(N, G) = e$ *. By Lemma 2(b), we* $get(N, G)_{\widetilde{W}}(N/M, G/M)$.

 $(b) \Rightarrow (a) \colon Let \ G \in V, \text{ so } (N, G)_{\widetilde{V}}(e, e)$. By hypothesis this implies $(N, G)_{\widetilde{W}}(e, e)$. *Thus, in particular* $W(N, G) = e$ *. Again Lemma 1(b) shows that* $G \in W$ *.*

Let χ denote a class of groups which is invariant under 1-isoclinism.

Corollary 5 *Let W be a variety and U a subvariety of A ∗ W. Suppose that* (N, G) ²^{*U*}(*K, H*)*.* Then the following hold.

- (n) $N/V^*(N, G) \in \chi$ *if and only if* $K/V^*(K, H) \in \chi$.
- (*b*) $W(N, G) \in \chi$ *if and only if* $W(K, H) \in \chi$ *.*

Proof By Corollary 3(b) $U \subseteq A * W \subseteq W * A$ *. Hence, by Theorem 4 and Lemma 4, the proof is completed.*

References

- 1. H. Arabyani, Some remarks on the varieties of groups, Global Analysis and Discrete Mathematics, 6, 73–81 (2021).
- 2. S. Heidarian, A. Gholami and Z. Mohammad Abadi, The structure of *ν*-isologic pairs of groups, Filomat, 26, 67–79 (2011).
- 3. N. S. Hekster, On the structure of *n*-isoclinism classes of groups, J. Pure Appl. Algebra, 40, 63–85 (1986).
- 4. N. S. Hekster, Varieties of groups and isologism, J. Aust. Math. Soc., (Ser. A), 46, 22–60 (1989).
- 5. J. A. Hulse and J. C. Lennox, Marginal series in groups, Proceedings of the Royal Society of Edinburgh, 76A, 139–154 (1976).
- 6. C.R. Leedham-Green and S. Mackay, Baer- Invariants, Isologism, Varietal laws and Homology, Acta Math., 137, 99–150 (1976).
- 7. H. Neuman, Varieties of groups, Speringer- Verlag Berlin Heidelberg, New York, (1967).
- 8. M. R. Rismanchian and M. Araskhan, Some properties on the Baer-invariant of a pair of groups and *νG*-marginal series, Turk. J. Math., 37, 259–266 (2013).