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Abstract Let V be a variety of groups defined by a set V of laws. Then the
verbal subgroup and the marginal subgroup of a group G associated with the
variety are denoted by V (G) and V ∗(G), respectively. Let (N,G) be a pair of
groups in which N is a normal subgroup of G. In the paper, we study the lower
and upper V-marginal series of the pair (N,G) and prove some properties of
isologism of pairs of groups.
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1 Introduction and preliminary

Let F be a free group freely generated by a countable set {x1, x2, . . .}. Let
V be a variety of groups defined by a subset V of F . Then for any group G
we assume that the reader is familiar with the notions of the verbal subgroup
V (G) and the marginal subgroup V ∗(G), associated with the variety of groups.
(see [6,7] for more information).

Let (N,G) be a pair of groups in which N is a normal subgroup of G, then
we define [NV ∗G] to be the subgroup of G generated by the following set

{v(g1, g2, . . . , gin, . . . , gr)v(g1, g2, . . . , gr)−1 | 1 ≤ i ≤ r, v ∈ V, gi ∈ G,n ∈ N}.
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We can see that [NV ∗G] is the smallest normal subgroup T of G contained in
N such that N/T is contained in V ∗(

G

T
). Also, we define

V ∗(N,G) = {n ∈ N | v(g1, g2, . . . , gin, . . . , gr) = v(g1, . . . , gr),

∀ v ∈ V, gi ∈ G, 1 ≤ i ≤ r}.

In particular, if N = G, then V (N,G) = V (G) and V ∗(N,G) = V ∗(G) are
ordinary verbal and marginal subgroups of G. (see [5,8] for more information).

In 1976, Leedham-Green and McKay [6] introduced the notion of the prod-
uct of varieties as follows.

Let V and W be varieties of groups defined by the set of laws V and W ,
respectively. The product U = V ∗W is the variety of all groups G such that
V (G) ⊆ W ∗(G). Also, the varbal subgroup of the product U = V ∗ W is
U(G) = [V (G)W ∗G]. (see [4] for more information).

The notion of V ∨ W is the variety whose set of laws are in V ∩ W and
also, [V,W] consists of all groups whose V -subgroups centralize W -subgroups.
Moreover, VW is the variety of groups such that are extensions of a group in
V by a group in W.

Let (N,G) and (M,H) be pairs of groups. An homomorphism from (N,G)
to (M,H) is a homomorphism f : G → H such that f(N) ⊆ M . We say
that (N,G) and (M,H) are isomorphic and write (N,G) ≃ (M,H), if f is
an isomorphism and f(N) = M . Let (N,G) and (M,H) be two pairs of
groups and V be a variety of groups defined by the set of laws V . An V-
isologism between (N,G) and (M,H) is a pair of isomorphism (α, β) with
α : G/V ∗(N,G) → H/V ∗(M,H) and β : V (N,G) → V (M,H), such that

α
(
N/V ∗(N,G)

)
= M/V ∗(M,H),

and for every v ∈ V , n ∈ N and g1, . . . , gr ∈ G

β
(
v(g1, · · · , gin, · · · , gr)v(g1, · · · , gr)−1

)
=

v(h1, · · · , him, · · · , hr)v(h1, · · · , hr)
−1,

whenever, hi ∈ α
(
giV

∗(N,G)
)

and m ∈ α
(
nV ∗(N,G)

)
. We say that (N,G)

and (M,H) are V-isologic, if there exists an V-isologism between them. In this
case we write (N,G) ∼V (M,H).

If V is the variety of abelian groups or nilpotent groups of class at most n,
then V-isologism coincides with isoclinism and n-isoclinism between pairs of
groups. In addition, if N = G and M = H, then V-isologism between two pairs
of groups is an V-isologism between G and H. (see [1–3] for more information).

2 The main results

In this section, we generalize some properties of isologism of groups to a pair
of groups. First of all, we discuss some preliminaries which are needed for the
proof of our results. The following lemma is similar to Lemma 1 of [2].
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Lemma 1 If (N,G) is a pair of groups and M ⊴G such that M ⩽ N , then

(a) V (V ∗(N,G)) = ⟨e⟩ and V ∗
(

N

V (N,G)
,

G

V (N,G)

)
=

N

V (N,G)
,

(b) V (N,G) = ⟨e⟩ if and only if V ∗(N,G) = N if and only if G ∈ V,

(c) [KV ∗G] = ⟨e⟩ if and only if K ⊆ V ∗(N,G),

(d) V

(
N

K
,
G

K

)
=

V (N,G)K

K
and V ∗

(
N

K
,
G

K

)
⊇ V ∗(N,G)K

K
,

(e) V (K) ⊆ [KV ∗G] ⊆ K ∩ V (N,G),

(f) If K ∩V (N,G) = ⟨e⟩, then K ⊆ V ∗(N,G) and V ∗
(
N

K
,
G

K

)
=

V ∗(N,G)

K
,

(g) If [K,G] ⊆ V ∗(N,G), then [V (N,G),K] = ⟨e⟩. In particular

[V (N,G), V ∗(N,G)] = ⟨e⟩.

Theorem 1 ([2], Theorem 2) Let (N1, G1) and (N2, G2) be pairs of groups.
Then (N1, G1) ∼V (N2, G2) if and only if there exists a pair (N,G) of groups
and there exists normal subgroups M1 and M2 of G with M1 ⊆ N and M2 ⊆ N

such that (N1, G1) ≃
(

N

M1
,
G

M1

)
, (N2, G2) ≃

(
N

M2
,
G

M2

)
, and

(N1, G1) ∼V (N,G) ∼V (N2, G2).

Lemma 2 ([2] , Lemma 5) Let (N,G) be a pair of groups. If M is a normal
subgroup of G with M ≤ N and H is a subgroup of G, then

(a) (H ∩N,H) ∼V
(
(H ∩N)V ∗(N,G),HV ∗(N,G)

)
. In particular if

G = HV ∗(N,G),

then (H ∩N,H) ∼V (N,G). Conversely, if H
V ∗(H∩N,H) satisfies the ascend-

ing chain condition on normal subgroups and (H ∩N,H) ∼V (N,G), then
G = HV ∗(N,G).

(b) (N/M,G/M) ∼V
(
N/M ∩ V (N,G), G/M ∩ V (N,G)

)
. In particular if

M ∩ V (N,G) = ⟨e⟩,

then (N,G) ∼V (N
M , G

M ). Conversely, if V (N,G) satisfies the ascending
chain condition on normal subgroups and (N,G) ∼V (N

M , G
M ), then

M ∩ V (N,G) = ⟨e⟩.

Definition 1 Let (N,G) be a pair of groups, V and W are two varieties of
groups defined by the sets of laws V and W , respectively, then the product
V ∗W is the variety of all groups G such that V (N,G) ⊆ W ∗(N,G).
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Lemma 3 Let V and W be varieties of groups and put U = V ∗W. Then the
following are equivalent.

(a) For any pair of groups (N,G):
U∗(N,G)

W ∗(N,G)
⊆ V ∗

(
N

W ∗(N,G)
,

G

W ∗(N,G)

)
,

(b) For any pair of groups (N,G) and K ⊴ G:

[[KV ∗G]W ∗G] ⊆ [KU∗G].

Moreover, the equality sign holds in (a) if and only if the equality sign holds
in (b).

Proof (a) ⇒ (b): Let K =
K

[KU∗G]
. So, K ⊆ U∗

(
N

K
,
G

K

)
. We can see that

[KW ∗
(
N

K
,
G

K

)
V ∗ G

K
] ⊆ W ∗

(
N

K
,
G

K

)
.

Hence, by using Lemma 1(c) we have [[KV ∗G]W ∗G] = ⟨ē⟩ and so,

[[KV ∗G]W ∗G] ⊆ [KU∗G].

(b) ⇒ (a): Now, put K = U∗(N,G). By using Lemma 1(c) we have

U∗(N,G)

W ∗(N,G)
⊆ V ∗

(
N

W ∗(N,G)
,

G

W ∗(N,G)

)
.

Now, assume that for any pair of group (N,G), we have

U∗(N,G)

W ∗(N,G)
= V ∗

(
N

W ∗(N,G)
,

G

W ∗(N,G)

)
.

Suppose that K ⊴G. By the first part of the proof [[KV ∗G]W ∗G] ⊆ [KU∗G].
Put K =

K

[[KV ∗G]W ∗G]
. Then

KW ∗(N,G)

W ∗(N,G)
⊆ V ∗

 N

K

W ∗(
N

K
,
G

K
)
,

G

K

W ∗(
N

K
,
G

K
)

 .

Now, [KU∗ G

N
] = ⟨ē⟩. So, [KU∗G] ⊆ [[NV ∗G]W ∗G]. Finally, assume that

[[KV ∗G]W ∗G] = [KU∗G].

Put
V ∗
(

N

W ∗(N,G)
,

G

W ∗(N,G)

)
=

M

W ∗(N,G)
.
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Then M ⊴G and [MV ∗G] ⊆ W ∗(N,G). Hence, by using lemma 1(c)

[[MV ∗G]W ∗G] = ⟨e⟩.

On the other hand, [[MV ∗G]W ∗G] = [MU∗G]. Thus, M ⊆ U∗(N,G). There-
fore,

V ∗
(

N

W ∗(N,G)
,

G

W ∗(N,G)

)
⊆ U∗(N,G)

W ∗(N,G)
,

and so, the equality sign holds in (b).

Theorem 2 Let (N,G) be a pair of groups, V,W are two varieties of groups
defined by the sets of laws V and W and put U = V ∗W. Then for any pair of
groups (N,G) the following hold.

(a) W ∗(N,G) ⊆ U∗(N,G).

(b) U∗(N,G)

W ∗(N,G)
⊆ V ∗

(
N

W ∗(N,G)
,

G

W ∗(N,G)

)
⊆ U∗

(
N

W ∗(N,G)
,

G

W ∗(N,G)

)
.

Proof If (N,G) is a pair of groups such that G ∈ W, then N = W ∗(N,G).
Also, V (N,G) ⊆ W ∗(N,G) = N . Thus, G ∈ U . Hence, W ⊆ U . It fol-
lows that W ∗(N,G) ⊆ U∗(N,G), which proves (a). Now, if G ∈ V, then
V (N,G) = ⟨e⟩. So, U(N,G) = [V (N,G)W ∗G] = ⟨e⟩. Thus, G ∈ U and
so, V ⊆ U . Now, let K ⊴G, if v(g1, g2, . . . , gin, . . . , gr)v(g1, g2, . . . , gr)−1 and
w(g1, g2, . . . , gin, . . . , gs)v(g1, g2, . . . , gs)

−1 are words in V (N,G) and W (N,G),
respectively, then, the laws which determine U are given by

w(g1, g2, . . . , giv(gs+1, . . . , gs+r), . . . , gjn, . . . , gs)w(g1, . . . , gs)
−1

where, 1 ≤ i ≤ s, gi ∈ G and n ∈ N . A generating element of [[KV ∗G]W ∗G]
is of the following form

w(g1, . . . , giv(gs+1, . . . , gs+jk, . . . , gs+r)v(gs+1, . . . , gs+r)
−1, . . . , gs)w(g1, . . . , gs)

−1,
(1)

where, g1, . . . , gs+r ∈ G, k ∈ K, 1 ≤ i ≤ s and 1 ≤ j ≤ r. Put

v = v(gs+1, . . . , gs+r),

and v′ = v(gs+1, . . . , gs+jk, . . . , gs+r). Then the element in (1) takes form

w(g1, . . . , giv
′v−1, gi+1, . . . , gs)w(g1, . . . , gs)

−1 =

w(g1, . . . , giv
−1vv′v−1, gi+1, . . . , gs)

w(g1, . . . , giv
−1, gi+1, . . . , gs)

−1.w(g1, . . . giv
−1, gi+1, . . . , gs)w(g1, . . . , gs)

−1

and this is an element of [KU∗G]. Thus, [[KV ∗G]W ∗G] ⊆ [KU∗G].

Corollary 1 Let V and W be varieties of groups and put U = V ∗ W. Let
K ⊴G. Then, the following hold.

(a) If K ⊆ U∗(N,G), then [KV ∗G] ⊆ W ∗(N,G).
(b) If K ∩ V ∗(N,G) = ⟨e⟩, then K ∩ U∗(N,G) ⊆ V ∗(N,G).
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Proof (a) If K ⊆ U∗(N,G), then by Lemma 1(c), [KU∗G] = ⟨e⟩. By lemma
3 and Theorem 2(b), we get [[KV ∗G]W ∗G] = ⟨e⟩. Again by Lemma 1(c),
[KV ∗G] ⊆ W ∗(N,G).
(b) We can see that

[(K ∩ U∗(N,G))V ∗G] ⊆ K ∩ [U∗(N,G)V ∗G] ⊆ K ∩W ∗(N,G).

Thus, if K ∩W ∗(N,G) = ⟨e⟩, then by Lemma 1(c) the proof is completed.

Corollary 2 Let V,W and U be any varieties of groups. Then
V ∗ (W ∗ U) ⊆ (U ∗W) ∗ U .

Proof Let G ∈ V ∗ (W ∗U). Put T = W ∗U . Thus, V (N,G) ⊆ T ∗(N,G). Now,
[V (N,G)W ∗G] ⊆ U∗(N,G). Thus, S(N,G) ⊆ U∗(N,G), where S = V ∗ W,
as required.

Corollary 3 Let V ⊆ V1 and W ⊆ W1 be varieties of groups. Then the
following hold.

(a) V ∗W ⊆ V1 ∗W1.
(b) V ∗ A ⊇ A ∗ V, where A is the variety of all abelian groups.
(c) For any m,n ≥ 0, V ∗ ηm+n = (V ∗ ηm) ∗ ηn, where ηc is the variety of all

nilpotent groups of class at most c.

Proof (a) If G ∈ V ∗W, then V1(N,G) ⊆ V (N,G) ⊆ W ∗(N,G) ⊆ W1(N,G).
Thus, G ∈ V1 ∗W1.

(b) Let G ∈ A ∗ V. Thus, [N,G] ⊆ V ∗(N,G). Then V (N,G) ⊆ A(N,G) and
so, G ∈ V ∗ A.

(c) It is follows from the fact that for any groups G and m,n ≥ 0,

Zm+n(N,G)

Zn(N,G)
= Zm

(
N

Zn(N,G)

)
.

Proposition 1 Let V, W and U be varieties of groups. Then the following
hold.

(a) V ∨W ⊆ V ∗W ⊆ VW.
(b) If V ⊆ U ∗ A, then V ∗W ⊆ [U ,W]. In particular V ∗W ⊆ [V,W ].

Proof (a) By Lemma 1(e), we have [V (N,G)W ∗G] ⊆ V (N,G) ∩W (N,G) for
any pair (N,G) of groups. Hence, V ∨W ⊆ V ∗W. Assume that G ∈ V ∗W.
Thus, V (N,G) ⊆ W ∗(N,G). By Lemma 1(a), we get W (V (N,G)) = ⟨e⟩.
So, G ∈ WV. we conclude that V ∗W ⊆ VW.

(b) Let G ∈ V ∗W. So, V (N,G) ⊆ W ∗(N,G). By hypothesis

[U(N,G), N ] ⊆ V (N,G),

and so, [U(N,G), N ] ⊆ W ∗(N,G) and by Lemma 1(g),

[W (N,G), U(N,G)] = ⟨e⟩.

Thus, G ∈ [U ,W]. This implies that V ∗ W ⊆ [U ,W] and so, V ⊆ V ∗ A.
By setting U = V, the result is held.
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Let V and W be varieties of groups and put U = V ∗W . For a pair (N,G) of
groups, let

∆V,W(N,G) =

V ∗
(

N

W ∗(N,G)
,

G

W ∗(N,G)

)
U∗(N,G)

W ∗(N,G)

.

In other words, ∆V,W(N,G), measures to what extend the group

V ∗
(

N

W ∗(N,G)
,

G

W ∗(N,G)

)
,

deviates from the group U∗(N,G)

W ∗(N,G)
, following Lemma 3.

Theorem 3 Let V and W be varieties of groups and put U = V ∗W. Assume
that (N,G) ∼U (H1,H2). Then ∆V,W(N,G) ≃ ∆V,W(K,H).

Proof By Theorem 1, we may assume that

(H1,H2) =

(
N

M
,
G

M

)
,

for some normal subgroup M of G such that M ⩽ N and M ∩U(N,G) = ⟨e⟩.
By Lemma 1(f), we have K ⊆ U∗(N,G) and

U∗
(
N

M
,
G

M

)
=

U∗(N,G)

M
.

Put W ∗
(
N

M
,
G

M

)
=

K

M
such that K ⊴G and MW ∗(N,G) ⊆ K. Thus,

∆V,W(N/M,G/M) =
V ∗ ((N/M)/W ∗ (N/M,G/M

)
, (G/M)/W ∗ (N/M,G/M

))
U∗
(
N/M,G/M

)
/W ∗

(
N/M,G/M

)

∼=
V ∗
(

N

W ∗(N,G)
/

K

W ∗(N,G)
,

G

W ∗(N,G)
/

K

W ∗(N,G)

)
U∗(N,G)/W ∗(N,G)

K/W ∗(N,G)

.

(2)

We have [KW ∗G] ⊆ M and so,

[(K ∩ V (N,G))W ∗G] ⊆ [KW ∗G] ∩ [V (N,G)W ∗G] ⊆ M ∩ U(N,G) = ⟨e⟩.

Therefore, Lemma 1(c) gives K ∩ V (N,G) ⊆ W ∗(N,G), where

K

W ∗(N,G)
∩ V

(
N

W ∗(N,G)
,

G

W ∗(N,G)

)
= ⟨ē⟩.
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An application of Lemma 1(f), again shows that

V ∗

(
N

W ∗(N,G)
/

K

W ∗(N,G)
,

G

W ∗(N,G)
/

K

W ∗(N,G)

)
=

V ∗
(
N/W ∗(N,G), G/W ∗(N,G)

)
K/V ∗(N,G)

.

Now, by (2), we obtain ∆V,W(N,G) ∼= ∆V,W(N/M,G/M).

Theorem 4 Let V and W be varieties of groups. Put U = V ∗ W. Suppose
that (N,G) ∼U (K,H). Then the following hold.

(a) (N/V ∗(N,G), G/V ∗(N,G)) ∼V (K/V ∗(K,H),H/V ∗(K,H)).
(b) V (N,G) ∼W V (K,H).

Proof (a) Put K/M = V ∗(N/M,G/M), so that K ⊴G and

MW ∗(N,G) ⊆ K.

Now, we show that K ∩ V (N,G) ⊆ W ∗(N,G). Indeed it implies that

(K ∩ V (N,G))W ∗(N,G) = W ∗(N,G),

whence

K/W ∗(N,G) ∩ V (N/W ∗(N,G), G/W ∗(N,G)) = ⟨ē⟩,

by Lemma 1(d). Thus, by Lemma 2(b) we have

(N/W ∗(N,G), G/W ∗(N,G)) ∼V (N/W ∗(N,G), G/W ∗(N,G))/(K/W ∗(N,G))
∼= N/K
∼= (N/M)/(K/M)
∼= (N/M)/W ∗(N/M,G/M).

which is precisely what we want to prove. certainly
[(K ∩ V (N,G))W ∗G] ⊆ [KW ∗G] ∩ [V (N,G)W ∗G] ⊆ M ∩ U(N,G) = ⟨e⟩.

So, indeed by Lemma 1(c), we have K ∩ V (N,G) ⊆ W ∗(N,G).
(b) We show that

V (N,G) ∼W V (N/M,G/M) = V (N,G)K/K ∼= V (N,G)/(M ∩ V (N,G)).

Now, we have M ∩ V (N,G) ∩ W (V (N,G)) = M ∩ W (V (N,G)). So, by
Proposition 1(a), we get U(N,G) ⊇ W (V (N,G)). Since,

M ∩ U(N,G) = ⟨e⟩,

we obtain M ∩W (V (N,G)) = ⟨e⟩.

Corollary 4 Let n ≥ 0 and (N,G)∼
n
(K,H). Then for each i ∈ {0, . . . , n}, the

following hold
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(a) (N/Zi(N,G), G/Zi(N,G)) ∼
n−i

(K/Zi(K,H),H/Zi(K,H)).
(b) [N, iG] ∼

n−i
[K, iH].

Proof By Corollary 3(c), we have ηi ∗ ηn−i = ηn = ηn−i ∗ ηi for any i with
0 ≤ i ≤ n. Thus, the result follows from Theorem 4.

Lemma 4 Let V and W be varieties of group. Then the following are equiva-
lent

(a) V ⊆ W.
(b) For any two pairs of groups (N,G) and (K,H), (N,G)∼

V
(K,H) implies

(N,G)∼
W
(K,H).

Proof (a) ⇒ (b): Let (N,G)∼
V
(K,H). We may assume by Theorem 1 that

(K,H) ∼= (N/M,G/M) for some M ⊴G with M ∩ V (N,G) = e. As V ⊆ W,
we have W (N,G) ⊆ V (N,G), whence M ∩W (N,G) = e. By Lemma 2(b), we
get (N,G)∼

W
(N/M,G/M).

(b) ⇒ (a): Let G ∈ V, so (N,G)∼
V
(e, e). By hypothesis this implies (N,G)∼

W
(e, e).

Thus, in particular W (N,G) = e. Again Lemma 1(b) shows that G ∈ W.

Let χ denote a class of groups which is invariant under 1-isoclinism.

Corollary 5 Let W be a variety and U a subvariety of A ∗W. Suppose that
(N,G)∼

U
(K,H). Then the following hold.

(a) N/V ∗(N,G) ∈ χ if and only if K/V ∗(K,H) ∈ χ.
(b) W (N,G) ∈ χ if and only if W (K,H) ∈ χ.

Proof By Corollary 3(b) U ⊆ A ∗ W ⊆ W ∗ A. Hence, by Theorem 4 and
Lemma 4, the proof is completed.
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