Some Results on Isologism of Pairs of Groups

Homayoon Arabyani

Received: 13 October 2022 / Accepted: 25 May 2023

Abstract Let \mathcal{V} be a variety of groups defined by a set V of laws. Then the verbal subgroup and the marginal subgroup of a group G associated with the variety are denoted by V(G) and $V^*(G)$, respectively. Let (N, G) be a pair of groups in which N is a normal subgroup of G. In the paper, we study the lower and upper \mathcal{V} -marginal series of the pair (N, G) and prove some properties of isologism of pairs of groups.

Keywords Pair of groups \cdot Variety \cdot Isologism

Mathematics Subject Classification (2010) 20D15 · 20E99

1 Introduction and preliminary

Let F be a free group freely generated by a countable set $\{x_1, x_2, \ldots\}$. Let \mathcal{V} be a variety of groups defined by a subset V of F. Then for any group G we assume that the reader is familiar with the notions of the verbal subgroup V(G) and the marginal subgroup $V^*(G)$, associated with the variety of groups. (see [6,7] for more information).

Let (N, G) be a pair of groups in which N is a normal subgroup of G, then we define $[NV^*G]$ to be the subgroup of G generated by the following set

 $\{v(g_1, g_2, \dots, g_i n, \dots, g_r)v(g_1, g_2, \dots, g_r)^{-1} \mid 1 \le i \le r, v \in V, g_i \in G, n \in N\}.$

H. Arabyani

Department of Mathematics, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran. Tel.: +123-45-678910

Fax: +123-45-678910

 $E\text{-mail: } arabyani.h@gmail.com, \ h.arabyani@iau-neyshabur.ac.ir$

We can see that $[NV^*G]$ is the smallest normal subgroup T of G contained in N such that N/T is contained in $V^*(\frac{G}{T})$. Also, we define

$$V^*(N,G) = \{ n \in N \mid v(g_1, g_2, \dots, g_i n, \dots, g_r) = v(g_1, \dots, g_r), \\ \forall v \in V, \ g_i \in G, \ 1 \le i \le r \}.$$

In particular, if N = G, then V(N,G) = V(G) and $V^*(N,G) = V^*(G)$ are ordinary verbal and marginal subgroups of G. (see [5,8] for more information).

In 1976, Leedham-Green and McKay [6] introduced the notion of the product of varieties as follows.

Let \mathcal{V} and \mathcal{W} be varieties of groups defined by the set of laws V and W, respectively. The product $\mathcal{U} = \mathcal{V} * \mathcal{W}$ is the variety of all groups G such that $V(G) \subseteq W^*(G)$. Also, the varbal subgroup of the product $\mathcal{U} = \mathcal{V} * \mathcal{W}$ is $U(G) = [V(G)W^*G]$. (see [4] for more information).

The notion of $\mathcal{V} \lor \mathcal{W}$ is the variety whose set of laws are in $V \cap W$ and also, $[\mathcal{V}, \mathcal{W}]$ consists of all groups whose V-subgroups centralize W-subgroups. Moreover, \mathcal{VW} is the variety of groups such that are extensions of a group in \mathcal{V} by a group in \mathcal{W} .

Let (N, G) and (M, H) be pairs of groups. An homomorphism from (N, G)to (M, H) is a homomorphism $f : G \to H$ such that $f(N) \subseteq M$. We say that (N, G) and (M, H) are isomorphic and write $(N, G) \simeq (M, H)$, if f is an isomorphism and f(N) = M. Let (N, G) and (M, H) be two pairs of groups and \mathcal{V} be a variety of groups defined by the set of laws V. An \mathcal{V} isologism between (N, G) and (M, H) is a pair of isomorphism (α, β) with $\alpha : G/V^*(N, G) \to H/V^*(M, H)$ and $\beta : V(N, G) \to V(M, H)$, such that

$$\alpha(N/V^*(N,G)) = M/V^*(M,H).$$

and for every $v \in V$, $n \in N$ and $g_1, \ldots, g_r \in G$

$$\beta \left(v(g_1, \cdots, g_i n, \cdots, g_r) v(g_1, \cdots, g_r)^{-1} \right) = v(h_1, \cdots, h_i m, \cdots, h_r) v(h_1, \cdots, h_r)^{-1},$$

whenever, $h_i \in \alpha(g_i V^*(N, G))$ and $m \in \alpha(nV^*(N, G))$. We say that (N, G) and (M, H) are \mathcal{V} -isologic, if there exists an \mathcal{V} -isologism between them. In this case we write $(N, G) \sim_{\mathcal{V}} (M, H)$.

If \mathcal{V} is the variety of abelian groups or nilpotent groups of class at most n, then \mathcal{V} -isologism coincides with isoclinism and n-isoclinism between pairs of groups. In addition, if N = G and M = H, then \mathcal{V} -isologism between two pairs of groups is an \mathcal{V} -isologism between G and H. (see [1–3] for more information).

2 The main results

In this section, we generalize some properties of isologism of groups to a pair of groups. First of all, we discuss some preliminaries which are needed for the proof of our results. The following lemma is similar to Lemma 1 of [2]. Lemma 1 If (N,G) is a pair of groups and $M \leq G$ such that $M \leq N$, then (a) $V(V^*(N,G)) = \langle e \rangle$ and $V^*\left(\frac{N}{V(N,G)}, \frac{G}{V(N,G)}\right) = \frac{N}{V(N,G)}$, (b) $V(N,G) = \langle e \rangle$ if and only if $V^*(N,G) = N$ if and only if $G \in \mathcal{V}$, (c) $[KV^*G] = \langle e \rangle$ if and only if $K \subseteq V^*(N,G)$, (d) $V\left(\frac{N}{K}, \frac{G}{K}\right) = \frac{V(N,G)K}{K}$ and $V^*\left(\frac{N}{K}, \frac{G}{K}\right) \supseteq \frac{V^*(N,G)K}{K}$, (e) $V(K) \subseteq [KV^*G] \subseteq K \cap V(N,G)$, (f) If $K \cap V(N,G) = \langle e \rangle$, then $K \subseteq V^*(N,G)$ and $V^*\left(\frac{N}{K}, \frac{G}{K}\right) = \frac{V^*(N,G)}{K}$, (g) If $[K,G] \subseteq V^*(N,G)$, then $[V(N,G),K] = \langle e \rangle$. In particular $[V(N,G), V^*(N,G)] = \langle e \rangle$.

Theorem 1 ([2], Theorem 2) Let (N_1, G_1) and (N_2, G_2) be pairs of groups. Then $(N_1, G_1) \sim_{\mathcal{V}} (N_2, G_2)$ if and only if there exists a pair (N, G) of groups and there exists normal subgroups M_1 and M_2 of G with $M_1 \subseteq N$ and $M_2 \subseteq N$ such that $(N_1, G_1) \simeq \left(\frac{N}{M_1}, \frac{G}{M_1}\right), (N_2, G_2) \simeq \left(\frac{N}{M_2}, \frac{G}{M_2}\right),$ and $(N_1, G_1) \sim_{\mathcal{V}} (N, G) \sim_{\mathcal{V}} (N_2, G_2).$

Lemma 2 ([2], Lemma 5) Let (N,G) be a pair of groups. If M is a normal subgroup of G with $M \leq N$ and H is a subgroup of G, then

(a) $(H \cap N, H) \sim_{\mathcal{V}} ((H \cap N)V^*(N, G), HV^*(N, G))$. In particular if

$$G = HV^*(N, G),$$

then $(H \cap N, H) \sim_{\mathcal{V}} (N, G)$. Conversely, if $\frac{H}{V^*(H \cap N, H)}$ satisfies the ascending chain condition on normal subgroups and $(H \cap N, H) \sim_{\mathcal{V}} (N, G)$, then $G = HV^*(N, G)$.

(b)
$$(N/M, G/M) \sim_{\mathcal{V}} (N/M \cap V(N, G), G/M \cap V(N, G))$$
. In particular if

$$M \cap V(N,G) = \langle e \rangle,$$

then $(N,G) \sim_{\mathcal{V}} (\frac{N}{M}, \frac{G}{M})$. Conversely, if V(N,G) satisfies the ascending chain condition on normal subgroups and $(N,G) \sim_{\mathcal{V}} (\frac{N}{M}, \frac{G}{M})$, then

$$M \cap V(N,G) = \langle e \rangle.$$

Definition 1 Let (N, G) be a pair of groups, \mathcal{V} and \mathcal{W} are two varieties of groups defined by the sets of laws V and W, respectively, then the product $\mathcal{V} * \mathcal{W}$ is the variety of all groups G such that $V(N, G) \subseteq W^*(N, G)$.

Lemma 3 Let \mathcal{V} and \mathcal{W} be varieties of groups and put $\mathcal{U} = \mathcal{V} * \mathcal{W}$. Then the following are equivalent.

(a) For any pair of groups (N,G):

$$\frac{U^*(N,G)}{W^*(N,G)} \subseteq V^*\left(\frac{N}{W^*(N,G)}, \frac{G}{W^*(N,G)}\right)$$

(b) For any pair of groups (N,G) and $K \leq G$:

$$[[KV^*G]W^*G] \subseteq [KU^*G].$$

Moreover, the equality sign holds in (a) if and only if the equality sign holds in (b).

Proof (a)
$$\Rightarrow$$
 (b): Let $\overline{K} = \frac{K}{[KU^*G]}$. So, $\overline{K} \subseteq U^*\left(\frac{N}{K}, \frac{G}{K}\right)$. We can see that $[\overline{K}W^*\left(\frac{N}{K}, \frac{G}{K}\right)V^*\frac{G}{K}] \subseteq W^*\left(\frac{N}{K}, \frac{G}{K}\right)$.

Hence, by using Lemma 1(c) we have $[[\overline{K}V^*\overline{G}]W^*\overline{G}] = \langle \overline{e} \rangle$ and so,

$$[[KV^*G]W^*G] \subseteq [KU^*G]$$

 $(b) \Rightarrow (a)$: Now, put $K = U^*(N, G)$. By using Lemma 1(c) we have

$$\frac{U^*(N,G)}{W^*(N,G)} \subseteq V^*\left(\frac{N}{W^*(N,G)}, \frac{G}{W^*(N,G)}\right)$$

Now, assume that for any pair of group (N, G), we have

$$\frac{U^*(N,G)}{W^*(N,G)} = V^*\left(\frac{N}{W^*(N,G)}, \frac{G}{W^*(N,G)}\right)$$

Suppose that $K \trianglelefteq G$. By the first part of the proof $[[KV^*G]W^*G] \subseteq [KU^*G]$. Put $\overline{K} = \frac{K}{[[KV^*G]W^*G]}$. Then

$$\frac{\overline{K}W^*(N,G)}{W^*(N,G)} \subseteq V^*\left(\frac{\frac{N}{K}}{W^*(\frac{N}{K},\frac{G}{K})}, \frac{\frac{G}{K}}{W^*(\frac{N}{K},\frac{G}{K})}\right).$$

Now, $[\overline{K}U^*\frac{G}{N}] = \langle \bar{e} \rangle$. So, $[KU^*G] \subseteq [[NV^*G]W^*G]$. Finally, assume that

$$[[KV^*G]W^*G] = [KU^*G]$$

Put

$$V^*\left(\frac{N}{W^*(N,G)},\frac{G}{W^*(N,G)}\right) = \frac{M}{W^*(N,G)}$$

Then $M \leq G$ and $[MV^*G] \subseteq W^*(N,G)$. Hence, by using lemma 1(c)

$$[[MV^*G]W^*G] = \langle e \rangle.$$

On the other hand, $[[MV^*G]W^*G] = [MU^*G]$. Thus, $M \subseteq U^*(N,G)$. Therefore,

$$V^*\left(\frac{N}{W^*(N,G)},\frac{G}{W^*(N,G)}\right) \subseteq \frac{U^*(N,G)}{W^*(N,G)},$$

and so, the equality sign holds in (b).

Theorem 2 Let (N, G) be a pair of groups, \mathcal{V}, \mathcal{W} are two varieties of groups defined by the sets of laws V and W and put $\mathcal{U} = \mathcal{V} * \mathcal{W}$. Then for any pair of groups (N, G) the following hold.

(a)
$$W^*(N,G) \subseteq U^*(N,G)$$
.
(b) $\frac{U^*(N,G)}{W^*(N,G)} \subseteq V^*\left(\frac{N}{W^*(N,G)}, \frac{G}{W^*(N,G)}\right) \subseteq U^*\left(\frac{N}{W^*(N,G)}, \frac{G}{W^*(N,G)}\right)$

Proof If (N,G) is a pair of groups such that $G \in W$, then $N = W^*(N,G)$. Also, $V(N,G) \subseteq W^*(N,G) = N$. Thus, $G \in \mathcal{U}$. Hence, $W \subseteq \mathcal{U}$. It follows that $W^*(N,G) \subseteq U^*(N,G)$, which proves (a). Now, if $G \in \mathcal{V}$, then $V(N,G) = \langle e \rangle$. So, $U(N,G) = [V(N,G)W^*G] = \langle e \rangle$. Thus, $G \in \mathcal{U}$ and so, $\mathcal{V} \subseteq \mathcal{U}$. Now, let $K \leq G$, if $v(g_1, g_2, \ldots, g_i n, \ldots, g_r)v(g_1, g_2, \ldots, g_r)^{-1}$ and $w(g_1, g_2, \ldots, g_i n, \ldots, g_s)v(g_1, g_2, \ldots, g_s)^{-1}$ are words in V(N,G) and W(N,G), respectively, then, the laws which determine \mathcal{U} are given by

$$w(g_1, g_2, \ldots, g_i v(g_{s+1}, \ldots, g_{s+r}), \ldots, g_j n, \ldots, g_s) w(g_1, \ldots, g_s)^{-1}$$

where, $1 \leq i \leq s$, $g_i \in G$ and $n \in N$. A generating element of $[[KV^*G]W^*G]$ is of the following form

 $w(g_1, \dots, g_i v(g_{s+1}, \dots, g_{s+j}k, \dots, g_{s+r}) v(g_{s+1}, \dots, g_{s+r})^{-1}, \dots, g_s) w(g_1, \dots, g_s)^{-1},$ (1)

where, $g_1, \ldots, g_{s+r} \in G$, $k \in K$, $1 \le i \le s$ and $1 \le j \le r$. Put

$$v = v(g_{s+1}, \ldots, g_{s+r}),$$

and $v' = v(g_{s+1}, \ldots, g_{s+j}k, \ldots, g_{s+r})$. Then the element in (1) takes form

$$w(g_1, \dots, g_i v' v^{-1}, g_{i+1}, \dots, g_s) w(g_1, \dots, g_s)^{-1} = w(g_1, \dots, g_i v^{-1} v v' v^{-1}, g_{i+1}, \dots, g_s) w(g_1, \dots, g_i v^{-1}, g_{i+1}, \dots, g_s)^{-1} . w(g_1, \dots, g_i v^{-1}, g_{i+1}, \dots, g_s) w(g_1, \dots, g_s)^{-1}$$

and this is an element of $[KU^*G]$. Thus, $[[KV^*G]W^*G] \subseteq [KU^*G]$.

Corollary 1 Let \mathcal{V} and \mathcal{W} be varieties of groups and put $\mathcal{U} = \mathcal{V} * \mathcal{W}$. Let $K \leq G$. Then, the following hold.

(a) If $K \subseteq U^*(N,G)$, then $[KV^*G] \subseteq W^*(N,G)$. (b) If $K \cap V^*(N,G) = \langle e \rangle$, then $K \cap U^*(N,G) \subseteq V^*(N,G)$. Proof (a) If $K \subseteq U^*(N,G)$, then by Lemma 1(c), $[KU^*G] = \langle e \rangle$. By lemma 3 and Theorem 2(b), we get $[[KV^*G]W^*G] = \langle e \rangle$. Again by Lemma 1(c), $[KV^*G] \subseteq W^*(N,G)$.

(b) We can see that

$$[(K \cap U^*(N,G))V^*G] \subseteq K \cap [U^*(N,G)V^*G] \subseteq K \cap W^*(N,G).$$

Thus, if $K \cap W^*(N,G) = \langle e \rangle$, then by Lemma 1(c) the proof is completed.

Corollary 2 Let \mathcal{V}, \mathcal{W} and \mathcal{U} be any varieties of groups. Then

 $\mathcal{V} * (\mathcal{W} * \mathcal{U}) \subseteq (\mathcal{U} * \mathcal{W}) * \mathcal{U}.$

Proof Let $G \in \mathcal{V} * (\mathcal{W} * \mathcal{U})$. Put $T = \mathcal{W} * \mathcal{U}$. Thus, $V(N, G) \subseteq T^*(N, G)$. Now, $[V(N, G)\mathcal{W}^*G] \subseteq U^*(N, G)$. Thus, $S(N, G) \subseteq U^*(N, G)$, where $\mathcal{S} = \mathcal{V} * \mathcal{W}$, as required.

Corollary 3 Let $\mathcal{V} \subseteq \mathcal{V}_1$ and $\mathcal{W} \subseteq \mathcal{W}_1$ be varieties of groups. Then the following hold.

- (a) $\mathcal{V} * \mathcal{W} \subseteq \mathcal{V}_1 * \mathcal{W}_1$.
- (b) $\mathcal{V} * \mathcal{A} \supseteq \mathcal{A} * \mathcal{V}$, where \mathcal{A} is the variety of all abelian groups.
- (c) For any $m, n \ge 0$, $\mathcal{V} * \eta_{m+n} = (\mathcal{V} * \eta_m) * \eta_n$, where η_c is the variety of all nilpotent groups of class at most c.

Proof (a) If $G \in \mathcal{V} * \mathcal{W}$, then $V_1(N, G) \subseteq V(N, G) \subseteq W^*(N, G) \subseteq W_1(N, G)$. Thus, $G \in \mathcal{V}_1 * \mathcal{W}_1$.

- (b) Let $G \in \mathcal{A} * \mathcal{V}$. Thus, $[N, G] \subseteq V^*(N, G)$. Then $V(N, G) \subseteq A(N, G)$ and so, $G \in \mathcal{V} * \mathcal{A}$.
- (c) It is follows from the fact that for any groups G and $m, n \ge 0$,

$$\frac{Z_{m+n}(N,G)}{Z_n(N,G)} = Z_m\left(\frac{N}{Z_n(N,G)}\right).$$

Proposition 1 Let \mathcal{V} , \mathcal{W} and \mathcal{U} be varieties of groups. Then the following hold.

(a) $\mathcal{V} \lor \mathcal{W} \subseteq \mathcal{V} * \mathcal{W} \subseteq \mathcal{V} \mathcal{W}$.

- (b) If $\mathcal{V} \subseteq \mathcal{U} * \mathcal{A}$, then $\mathcal{V} * \mathcal{W} \subseteq [\mathcal{U}, \mathcal{W}]$. In particular $\mathcal{V} * \mathcal{W} \subseteq [\mathcal{V}, \mathcal{W}]$.
- $\begin{array}{ll} Proof\left(a\right) \ By \ Lemma \ 1(e), \ we \ have \ [V(N,G)W^*G] \subseteq V(N,G) \cap W(N,G) \ for \\ any \ pair \ (N,G) \ of \ groups. \ Hence, \ \mathcal{V} \lor \mathcal{W} \subseteq \mathcal{V} \ast \mathcal{W}. \ Assume \ that \ G \in \mathcal{V} \ast \mathcal{W}. \\ Thus, \ V(N,G) \subseteq W^*(N,G). \ By \ Lemma \ 1(a), \ we \ get \ W(V(N,G)) = \langle e \rangle. \\ So, \ G \in \mathcal{WV}. \ we \ conclude \ that \ \mathcal{V} \ast \mathcal{W} \subseteq \mathcal{VW}. \end{array}$
- (b) Let $G \in \mathcal{V} * \mathcal{W}$. So, $V(N, G) \subseteq W^*(N, G)$. By hypothesis

$$[U(N,G),N] \subseteq V(N,G),$$

and so, $[U(N,G), N] \subseteq W^*(N,G)$ and by Lemma 1(g),

$$[W(N,G), U(N,G)] = \langle e \rangle.$$

Thus, $G \in [\mathcal{U}, \mathcal{W}]$. This implies that $\mathcal{V} * \mathcal{W} \subseteq [\mathcal{U}, \mathcal{W}]$ and so, $\mathcal{V} \subseteq \mathcal{V} * \mathcal{A}$. By setting $\mathcal{U} = \mathcal{V}$, the result is held. Let \mathcal{V} and \mathcal{W} be varieties of groups and put $\mathcal{U} = \mathcal{V} * \mathcal{W}$. For a pair (N, G) of groups, let

$$\Delta_{\mathcal{V},\mathcal{W}}(N,G) = \frac{V^*\left(\frac{N}{W^*(N,G)}, \frac{G}{W^*(N,G)}\right)}{\frac{U^*(N,G)}{W^*(N,G)}}.$$

In other words, $\Delta_{\mathcal{V},\mathcal{W}}(N,G)$, measures to what extend the group

$$V^*\left(\frac{N}{W^*(N,G)},\frac{G}{W^*(N,G)}\right),$$

deviates from the group $\frac{U^*(N,G)}{W^*(N,G)}$, following Lemma 3.

Theorem 3 Let \mathcal{V} and \mathcal{W} be varieties of groups and put $\mathcal{U} = \mathcal{V} * \mathcal{W}$. Assume that $(N, G) \sim_{\mathcal{U}} (H_1, H_2)$. Then $\Delta_{\mathcal{V}, \mathcal{W}}(N, G) \simeq \Delta_{\mathcal{V}, \mathcal{W}}(K, H)$.

Proof By Theorem 1, we may assume that

$$(H_1, H_2) = \left(\frac{N}{M}, \frac{G}{M}\right),$$

for some normal subgroup M of G such that $M \leq N$ and $M \cap U(N, G) = \langle e \rangle$. By Lemma 1(f), we have $K \subseteq U^*(N, G)$ and

$$U^*\left(\frac{N}{M},\frac{G}{M}\right) = \frac{U^*(N,G)}{M}.$$

Put $W^*\left(\frac{N}{M}, \frac{G}{M}\right) = \frac{K}{M}$ such that $K \leq G$ and $MW^*(N, G) \subseteq K$. Thus,

$$\Delta_{\mathcal{V},\mathcal{W}}(N/M,G/M) = \frac{V^*\left((N/M)/W^*\left(N/M,G/M\right),(G/M)/W^*\left(N/M,G/M\right)\right)}{U^*\left(N/M,G/M\right)/W^*\left(N/M,G/M\right)}$$

$$\cong \frac{V^* \left(\frac{N}{W^*(N,G)} / \frac{K}{W^*(N,G)}, \frac{G}{W^*(N,G)} / \frac{K}{W^*(N,G)}\right)}{\frac{U^*(N,G)/W^*(N,G)}{K/W^*(N,G)}}.$$
(2)

We have $[KW^*G] \subseteq M$ and so,

$$[(K \cap V(N,G))W^*G] \subseteq [KW^*G] \cap [V(N,G)W^*G] \subseteq M \cap U(N,G) = \langle e \rangle.$$

Therefore, Lemma 1(c) gives $K \cap V(N,G) \subseteq W^*(N,G)$, where

$$\frac{K}{W^*(N,G)} \cap V\left(\frac{N}{W^*(N,G)}, \frac{G}{W^*(N,G)}\right) = \langle \bar{e} \rangle.$$

An application of Lemma 1(f), again shows that

$$\begin{split} V^* \Bigg(\frac{N}{W^*(N,G)} / \frac{K}{W^*(N,G)}, \frac{G}{W^*(N,G)} / \frac{K}{W^*(N,G)} \Bigg) = \\ & \frac{V^* \Big(N/W^*(N,G), G/W^*(N,G) \Big)}{K/V^*(N,G)}. \end{split}$$

Now, by (2), we obtain $\Delta_{\mathcal{V},\mathcal{W}}(N,G) \cong \Delta_{\mathcal{V},\mathcal{W}}(N/M,G/M)$.

Theorem 4 Let \mathcal{V} and \mathcal{W} be varieties of groups. Put $\mathcal{U} = \mathcal{V} * \mathcal{W}$. Suppose that $(N, G) \sim_{\mathcal{U}} (K, H)$. Then the following hold.

 $\begin{array}{l} (a) \ (N/V^*(N,G),G/V^*(N,G)) \sim_{\mathcal{V}} (K/V^*(K,H),H/V^*(K,H)). \\ (b) \ V(N,G) \sim_{\mathcal{W}} V(K,H). \end{array}$

Proof (a) Put $K/M = V^*(N/M, G/M)$, so that $K \leq G$ and

 $MW^*(N,G) \subseteq K.$

Now, we show that $K \cap V(N,G) \subseteq W^*(N,G)$. Indeed it implies that

$$(K \cap V(N,G))W^*(N,G) = W^*(N,G),$$

whence

$$K/W^*(N,G) \cap V(N/W^*(N,G), G/W^*(N,G)) = \langle \bar{e} \rangle,$$

by Lemma 1(d). Thus, by Lemma 2(b) we have

$$\begin{split} (N/W^*(N,G), G/W^*(N,G)) \sim_{\mathcal{V}} (N/W^*(N,G), G/W^*(N,G))/(K/W^*(N,G)) \\ &\cong N/K \\ &\cong (N/M)/(K/M) \\ &\cong (N/M)/W^*(N/M,G/M). \end{split}$$

which is precisely what we want to prove. certainly

 $[(K \cap V(N,G))W^*G] \subseteq [KW^*G] \cap [V(N,G)W^*G] \subseteq M \cap U(N,G) = \langle e \rangle.$

So, indeed by Lemma 1(c), we have $K \cap V(N,G) \subseteq W^*(N,G)$.

(b) We show that

 $V(N,G) \sim_{\mathcal{W}} V(N/M,G/M) = V(N,G)K/K \cong V(N,G)/(M \cap V(N,G)).$ Now, we have $M \cap V(N,G) \cap W(V(N,G)) = M \cap W(V(N,G)).$ So, by

Proposition 1(a), we get U(N,G) = W(V(N,G)) = M + W(V(N,G)). So, by

$$M \cap U(N,G) = \langle e \rangle,$$

we obtain $M \cap W(V(N,G)) = \langle e \rangle$.

Corollary 4 Let $n \ge 0$ and $(N,G)_{\underset{n}{\sim}}(K,H)$. Then for each $i \in \{0,\ldots,n\}$, the following hold

(a) $(N/Z_i(N,G), G/Z_i(N,G))_{n-i}(K/Z_i(K,H), H/Z_i(K,H)).$ (b) $[N, iG]_{\sim_i}[K, iH].$

Proof By Corollary 3(c), we have $\eta_i * \eta_{n-i} = \eta_n = \eta_{n-i} * \eta_i$ for any *i* with $0 \le i \le n$. Thus, the result follows from Theorem 4.

Lemma 4 Let \mathcal{V} and \mathcal{W} be varieties of group. Then the following are equivalent

(a) $\mathcal{V} \subseteq \mathcal{W}$.

(b) For any two pairs of groups (N,G) and (K,H), $(N,G)_{\widetilde{v}}(K,H)$ implies $(N,G)_{\widetilde{v}}(K,H)$.

Proof (a) \Rightarrow (b): Let $(N,G)_{\widetilde{\mathcal{V}}}(K,H)$. We may assume by Theorem 1 that $(K,H) \cong (N/M,G/M)$ for some $M \leq G$ with $M \cap V(N,G) = e$. As $\mathcal{V} \subseteq \mathcal{W}$, we have $W(N,G) \subseteq V(N,G)$, whence $M \cap W(N,G) = e$. By Lemma 2(b), we get $(N,G)_{\widetilde{\mathcal{W}}}(N/M,G/M)$.

 $(b) \Rightarrow (a): Let G \in \mathcal{V}, so (N, G)_{\widetilde{\mathcal{V}}}(e, e).$ By hypothesis this implies $(N, G)_{\widetilde{\mathcal{W}}}(e, e).$ Thus, in particular W(N, G) = e. Again Lemma 1(b) shows that $G \in \mathcal{W}$.

Let χ denote a class of groups which is invariant under 1-isoclinism.

Corollary 5 Let \mathcal{W} be a variety and \mathcal{U} a subvariety of $\mathcal{A} * \mathcal{W}$. Suppose that $(N,G)_{\sim}(K,H)$. Then the following hold.

- (a) $N/V^*(N,G) \in \chi$ if and only if $K/V^*(K,H) \in \chi$.
- (b) $W(N,G) \in \chi$ if and only if $W(K,H) \in \chi$.

Proof By Corollary 3(b) $\mathcal{U} \subseteq \mathcal{A} * \mathcal{W} \subseteq \mathcal{W} * \mathcal{A}$. Hence, by Theorem 4 and Lemma 4, the proof is completed.

References

- 1. H. Arabyani, Some remarks on the varieties of groups, Global Analysis and Discrete Mathematics, 6, 73–81 (2021).
- 2. S. Heidarian, A. Gholami and Z. Mohammad Abadi, The structure of ν -isologic pairs of groups, Filomat, 26, 67–79 (2011).
- 3. N. S. Hekster, On the structure of *n*-isoclinism classes of groups, J. Pure Appl. Algebra, 40, 63–85 (1986).
- 4. N. S. Hekster, Varieties of groups and isologism, J. Aust. Math. Soc., (Ser. A), 46, 22–60 (1989).
- J. A. Hulse and J. C. Lennox, Marginal series in groups, Proceedings of the Royal Society of Edinburgh, 76A, 139–154 (1976).
- C.R. Leedham-Green and S. Mackay, Baer- Invariants, Isologism, Varietal laws and Homology, Acta Math., 137, 99–150 (1976).
- 7. H. Neuman, Varieties of groups, Speringer- Verlag Berlin Heidelberg, New York, (1967).
- 8. M. R. Rismanchian and M. Araskhan, Some properties on the Baer-invariant of a pair of groups and ν_G -marginal series, Turk. J. Math., 37, 259–266 (2013).