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Abstract The aim of this paper is to investigate the existence and uniqueness
of solutions to uncertain fractional differential equations proposed by Canon-
ical Liu’s process. To this end, we provide and prove a a novel existence and
uniqueness theorem for uncertain fractional differential equations under Local
Lipschitz and monotone conditions is provided and proved. This result helps
us to consider and analyze solutions to a wide range of nonlinear uncertain
fractional differential equations driven by Canonical’s process to be considered
and analyzed.
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1 Introduction

A large number of physical processes such as real-life phenomena appear to
display fractional order demeanor that may vary with space or time. The frac-
tional calculus has authorized the operations of differentiation and integration
to at all fractional order. The order may take on at all real or imaginary
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value. Also, multitude systems modeled with the support of fractional calcu-
lus demonstrate fractional dynamical conduct such as viscoelastic systems [21],
colored noise [17], boundary layer effects in ducts and electromagnetic waves
[16]. In recent decades, theory fractional differential equations (FDEs) has en-
ticed many researchers such as [8] and [25] which, applied FDEs for model
acoustics, thermal systems, signal processing, system identification, robotics
and control, etc.

A FDEs is a differential equation including fractional derivatives. The re-
sults of various studies have clearly declared that the fractional derivatives
seem to arise universally and generally from main mathematical reasons. There
are different kinds of fractional derivatives like the Riemann-Liouville type and
Caputo type. To some sources about FDEs are presented in [8] and [9].

With this in mind, we tried to investigate the theory of uncertain fractional
differential equations.

As we already know, most of the phenomena and events in the real world
like changes in economic and political systems, collapse of governments, con-
flicts between tribes, wars, terrorist attacks occur unexpectedly. Thus, it is not
possible to anticipate or estimate, the price of stocks, valuable papers, mone-
tary units and precious metals accurately. Therefore, focusing on the price of
stocks seems to be the only way of finding out how this factor can affect the
growth or drop in the value of companies. Investigations on the effects of the
factors along with uncertainty theory can help better understanding and more
exact modeling of these phenomena. The uncertainty theory was first intro-
duced by Liu who then presented the concept of uncertainty measure which is
a powerful tool for dealing with uncertain phenomena facilitates measuring of
uncertain events that are based on normality, monotonicity, self-duality and
maximality axioms.

Then the concept of uncertain process was proposed by Liu, [11] introduc-
ing a particular uncertain process with stationary and independent increment
named canonical Liu’s process which is exactly like a stochastic process de-
scribed by Brownian motion.

Since then some articles have been published on the canonical Liu’s process
and its applications in other sciences such as economics and optimal control
[25]. Then Liu was inspired by stochastic notions and ito process to introduce
uncertain differential equations [12] driven by canonical Liu’s process for better
understanding of the uncertain phenomena.

Recently at [26], the concept of uncertain fractional differential equations
(UFDEs) was introduced based on the uncertainty theory. The Riemann-
Liouville type of uncertain fractional differential equation

DpX(t) = f(t,X(t)) + g(t,X(t))
dC(t)

dt

and the Caputo type of uncertain fractional differential equation

cDpX(t) = f(t,X(t)) + g(t,X(t))
dC(t)

dt
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were dealt with where Ct is the canonical Liu process.
Regarding the importance of the existence and uniqueness of a solution to

UFDEs driven by canonical Liu’s process, Liu investigated the existence and
uniqueness of solutions to the uncertain differential equations by employing
Lipschitz and Linear growth conditions [6], and stability analysis of uncertain
differential equations was given by Yao et al.[21]. Many researchers such as
Chen and Liu have managed to find analytic solutions for some special types of
uncertain differential equations [1]. Analytical solutions were presented only
for some special uncertain fractional differential equations [26] in order to
understand what kinds of uncertain fractional differential equations have so-
lutions in [8]. The main goal of this paper is providing some weaker conditions
to study the existence an uniqueness of solution to the uncertain fractional
differential equations. In this regard, we tried to prove a novel existence and
uniqueness theorem under the Local Lipschitz and monotone conditions.

In this paper, some concepts and results in uncertainty theory are first
reviewed. Then, the fractional derivatives and uncertain fractional differential
equations are also taken into consideration. Finally, an existence and unique-
ness theorem under Local Lipschitz and monotone conditions are proved.

2 Preliminaries

The emphasis in this section is mainly on introducing some concepts such as
uncertainty measure,uncertainty space, uncertain variables, independence of
uncertain variables, expected value, variance, uncertain process, and canonical
Liu’s process.

Suppose that Θ is a non-empty set and P is the power set of Θ. Each
element of κ in P is called an event. For the purpose of presenting a basic
definition of uncertainty, it is needed to consider a number M{κ} to each
event κ. In order to make sure the number M{κ} has certain mathematical
features that is intuitively expect these four axioms are accepted [8]:
1. Axiom (Normality) M{Θ} = 1.
2. Axiom (Monotonicity) M{κ} ≤ M{β} whenever κ ⊂ β.
3. Axiom (Self-Duality) M{κ}+M{κc} = 1 for any event κ.
4. Axiom (Maximality) M{Uiκi} = supi M{κi} for any events {κi} with

supi M{κi} < 0.5.

Definition 1 [18]. The set function M is called a uncertainty measure if it
satisfies the normality, monotonicity, self-duality, and maximality axioms.
A family P with these four properties is called a σ-algebra. The pair (Θ,P)
is called a measurable space, and the elements of P is afterwards called P-
measurable sets instead of events.

Definition 2 [18]. The triple (Θ,P,M) is a uncertainty space if Θ be a
nonempty set, P the power set of Θ, and M a uncertainty measure.
Let (Θ,P,M) be a uncertainty space. A filtration is a family {Pt}t≥0 of in-
creasing sub-σ-algebras of P (i.e. Pt ⊂ Ps ⊂ P for all 0 ≤ t < s < ∞). The
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filtration is said to be right continuous if Pt =
⋂
s>t

Ps for all t ≤ 0. When

the uncertainty space is complete, the filtration is said to satisfy the usual
conditions if it is right continuous and P0 contains all M-null sets.
We also define P∞ = σ(Ut≥0Pt) (i.e. σ-algebra generated by Ut≥0Pt.)
P-measurable uncertain variable are denoted by Lp(Θ,Rd) that will be de-
fined later.
A process is called P-adapted, if for all t ∈ [0, t] the uncertain variable x(t) is
P-measurable.

Definition 3 [18]. An uncertain variable is defined as a (measurable) function
ξ : (Θ,P,M) −→ R.

Definition 4 [18]. If we suppose that ς is an uncertain variable. Then the
expected value of ς is as follows:

E[ς] =

∫ +∞

0

M{ς ≥ s}ds−
∫ 0

−∞
M{ς ≤ s}ds

these two integrals are finite.

Definition 5 [10]. The uncertainty distribution η(x) of an uncertain variable
ς is defined by

η(w) = max{1, 2M(ς = w)}, w ∈ R.

Definition 6 [10]. An uncertainty distribution η(w) is regular on condition
that it is a continuous and strictly increasing function with respect to w at
which 0 < η(w) < 1, and

lim
w→−∞

η(w) = 0, lim
w→+∞

η(w) = 1.

In addition, the inverse function η−1(α) can be called the inverse uncertainty
distribution of ς.

Definition 7 [9]. Considering T be an index set and (Θ,P,M) be an un-
certainty space. An uncertain process can be described as a function from
T× (Θ,P,M) to the set of real numbers.
An uncertain process is basically a sequence of uncertain variables indexed by
time or space.

Definition 8 [10]. An uncertain process Ct is a canonical Liu process if the
following are met

1. C0 = 0,
2. Ct has stationary and independent increments,
3. every increment Ct+s − Cs is a normally distributed uncertain variable

with expected value et and variance σ2t2 whose membership function is

η(w) = 2
(
1 + exp(

π|w − et|√
6σt

)
)−1

, −∞ < w < +∞.
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Based on canonical Liu process, uncertain integral is defined as an uncertain
counterpart of Ito integral as follows.
provided that the limit exists almost surely and is an uncertain variable. Let
us define a sequence of uncertainty stopping times.
Definition 9 [9]. An uncertain variable τ : Θ → [0,∞] (it may take the
value ∞) is called a {Pt}-stopping time (or simply, stopping time) if {θ :
τ(θ) ≤ t} ∈ Pt for any t ≥ 0

τh = inf{t ≥ 0 : |w(t)| ≥ k},
σ1 = inf{t ≥ 0 : x(w(t)) ≥ 2ε},
σ2i = inf{t ≥ σ2i−1 : x(w(t)) ≤ ε} i = 1, 2, . . . ,
σ2i+1 = inf{t ≥ σ2i : x(w(t)) ≥ 2ε} i = 1, 2, . . . ,

where throughout this paper we set inf ϕ = ∞.
Definition 10 [9]. If W = {Wt}t≥0 is a measurable process and τ is a stop-
ping time, then {Wτ∧t}t≥0 is called a stopped process of W .
There are some useful inequalities for uncertain variables such as Hölder in-
equality and Chebyshev inequality. In the sequence, we introduce generalized
inequalities for uncertain variables.
Theorem 1 (Hölders Inequality) [4]. Let n and m be two positive real numbers
with 1

n + 1
m = 1, ξ and η be independent uncertain variables with

E[|ς|n] ≤ +∞ and E[|ρ|m] ≤ +∞.

We have
E[|ςρ|] ≤ n

√
E[|ς|n] m

√
E[|ρ|m].

Theorem 2 (Chebychev’s Inequality). Let ς : θ → Rk be an uncertain variable
such that E[|ς|n] ≤ +∞ for some n, 0 ≤ n ≤ ∞.
Then Chebychev’s inequality:

M[|ς| ≥ λ] ≤ 1

λn
E[|ς|n]for allλ ≥ 0.

Proof Put A = {x | |ς(x)| ≥ λ}. Then∫
θ

|ς(x)|pdMx ≥
∫
A

|ς(x)|ndMx ≥ λnMA.

Before, ending this section it is essential to introduce some symbols that are
used in next sections.
Notation 1: Ln(θ,Rd) the family of Rd-valued uncertain variables ς with

E|ξ|p < ∞.
Notation 2: ℓp([a, b],Rd) the family of Rd-valued Pt-adapted processes {h(t)}a≤t≤b

such that
∫ b

a
|h(t)|ndt < ∞ almost surely.

Notation 3: Mn([a, b],Rd) the family of processes {h(t)}a≤t≤b in ℓn([a, b],Rd)

such that
∫ b

a
|h(t)|ndt < ∞.

Notation 4: ℓn(R+,R
d) the family of processes {h(t)}t>0 such that for every

T > 0, {h(t)}a≤t≤T ∈ ℓn([0, T ],Rd).
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3 Uncertain fractional differential equations

In this section, we give some basic definitions, notations and lemmas which
will be used throughout the paper, in order to establish our main results.

Let us introduce tow common notation for the fractional-order differential
operator: the Riemann-Liouville and the Caputo-type. For more details see [1,
26].
Definition 11 [10]. The Riemann-Liouville fractional derivative of f is defined
as

RDαf(t) =
1

Γ (1− α)

d

dt

∫ t

0

(t− s)−αf(s)ds (1)

where Γ (.) stands for the gamma function Γ (x) =
∫∞
0

tx−1e−tdt, α ∈ (0, 1],
and t > 0.
Definition 12 [9]. The Caputo-type derivative of order α for a function f can
be written as

CDαf(t) =
1

Γ (1− α)

∫ t

0

(t− s)−αf ′(s)ds (2)

where f ′(s) is the first-order derivative of f(s).
Remark 1 The relationship between the Riemann-Liouville derivative and the
Caputo-type derivative can be written as

RDαf(t) =C Dαf(t) +
t−α

Γ (1− α)
f(0). (3)

In this study, we consider the Caputo-type fractional derivative of order α and
the initial value problem of uncertain fractional-order differential equation is
given as following:{

CDαw(t) = f(w(t), t) + g(w(t), t)Ċ(t)
w(t) = wt,

(4)

where the functions f(w(t), t) and g(w(t), t) : [0, T ] × R → R. The term
Ċ(t) = dC

dt describes a state dependent random noise, C(t) is a canonical Liu
process defined on a given filtered uncertainty space (Θ,P, {Pt}t≥0,M) with
a normal filtration {Pt}t≥0, which is an increasing and continuous family of
σ-algebras of P, contains all of Θ-null sets, and C(t) is P-measurable for each
t > 0. Here, let us recall the definitions of fractional calculus, the fractional
integral operator of order α is given as following

Iαg(t) =
1

Γ (α)

∫ t

0

(t− s)α−1g(s)ds, t > 0 (5)

Applying the integral operator (5) to the both sides of initial value problem
(4) we can obtain the Volterra integral equation:

w(t) = w0+
1

Γ (α)

∫ t

0

(t−s)α−1f(w(s), s)ds+
1

Γ (α)

∫ t

0

(t−s)α−1g(w(s), s)dC(s),

(6)
in which α ∈ (0, 1) and t > 0.
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Now, the required tools to prove our proposed theorem for existence and
uniqueness, such as Lemma’s and inequalities our mentioned.

Lemma 1 (Burkholder -Davis-Gundy inequality for uncertain process):
Let g ∈ ℓp(R+,R

d×m). Define for t > 0,

w(t) =

∫ t

0

q(s)dCs and κ(t) =

∫ t

0

|g(s)|2ds.

Then,
E|κ(t)| ≤ E( sup

0≤s≤t
|w(s)|2) ≤ 4E|κ(t)|. (7)

Proof Without loss of generality, if w(t) and κ(t) are bounded. For each integer
n > 1, we define the stopping time as

τn = inf{t ≥ 0 : |w(t)| ∨ κ(t) ≥ n}.

If (7) can be state by the stopped processes w(t ∧ τn) and κ(t ∧ τn), then the
general case follows by letting n → ∞. Moreover, for simplicity we set

w∗(t) = sup
0≤s≤t

|w(s)|.

Consider, the following inequality

E|w(t)|2 ≤ E

∫ t

0

|g(s)|2ds = E(κ(t)), (8)

then by the use of Doob martingale inequality[3],

E|w∗(t)| ≤ 4E|w(t)|2,

by substituting this into (8) yields,

E|w∗(t)| ≤ 4E(κ(t)),

which is the right-hand-side inequality of (7). In order to demonstrate the
left-hand-side one,

y(t) =

∫ t

0

q(s)ds.

Then,

E|y(t)|2 = E

∫ t

0

|q(s)|2ds = E

∫ t

0

dκ(s) = E|κ(t)|. (9)

On the other hand, the integration by parts formula yields,

w(t) =

∫ t

0

dw(s) +

∫ t

0

w(s)ds

= y(t) +

∫ t

0

w(s)ds.
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Therefore,

|y(t)| ≤ |w(t)|+
∫ t

0

|w(s)|ds ≤ 2w∗(t).

Here, by substituting this into (9) one sees that,

E|κ(t)| ≤ 4E[|w∗(t)|2].

This implies,
1

4
E|κ(t)| ≤ E[|w∗(t)|2].

Finally, the proof is complete.

In the theory of ordinary differential equations, stochastic differential equa-
tions, and fuzzy differential equations the integral inequalities of Gronwall
type have been used in a wide scope. In order to prove the results on stability,
existence, and uniqueness.

Lemma 2 (Gronwall’s inequality for canonical Liu process): Let T > 0, c ≤
0., and ϑ(.) be an uncertainty measurable bounded nonnegative function on
[0,T], and β(.) be a nonnegative integrable function on [0,T]. If

ϑ(t) ≤ c+

∫ t

0

β(s)ϑ(s)ds for all 0 ≤ t ≤ T, (10)

then
ϑ(t) ≤ c exp(

∫ t

0

β(s)ds) for all 0 ≤ t ≤ T. (11)

Proof First, we may assume that c > 0. Set

e(t) = c+

∫ t

0

β(s)ϑ(s)ds for 0 ≤ t ≤ T.

Then ϑ(t) ≤ e(t). Moreover, by the chain rule of classical calculus, we have

log(e(t)) = log(c) +

∫ t

0

β(s)ϑ(s)

e(s)
ds ≤ log(c) +

∫ t

0

β(s)ds.

This implies

e(t) ≤ c exp(

∫ t

0

β(s)ds) for 0 ≤ t ≤ T.

According to ϑ(t) ≤ e(t), the proof is complete.

Lemma 3 If the function L(u, t) is locally integrable in t for each fixed u ∈
[0,∞] and is continuous non-decreasing in u for each fixed t ∈ [0, T ], for all
λ > 0, u0 ≥ 0, then the integral equation

u(t) = u0 + λ

∫ t

0

L(u(s), s)ds, (12)

has a global solution on [0, T ].
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Lemma 4 The function K(u, t) is locally integrable in t for each fixed u ∈
[0,∞] and is continuous non-decreasing in u for each fixed t ∈ [0, T ], for
K(0, t) = 0 and γ > 0, if a non-negative continuous function z(t) satisfies

z(t) ≤ γ

∫ t

0

K(z(s), s)ds, t ∈ R,

z(0) = 0,

(13)

then z(t)] = 0 for all t ∈ [0, T ].

Throughout this paper, we consider the uncertain fractional differential equa-
tions {

CDαw(t) = f(w(t), t)dt+ g(w(t), t)dCt

dt ,
w(0) = w0,

(14)

where Ct is a canonical Liu process and p, q are some given functions. w(t) is
the solution to the (14) which is an uncertain process in the sense of Liu. In
order to consider the existence and uniqueness of the solution of equation (14),
we attempt to use the following approximate technique, known as Picard�s
iteration. The sequence of stochastic process {wn}n≥0 is constructed as follows:{

wn+1(t) = w0 +
1

Γ (α)

∫ t

0
p(wn(s), s)ds+

1
Γ (α)

∫ t

0
q(wn(s), s)dC(s), n ≥ 1,

w(0) = w0,

(15)
in which p(wn(t), t) = (t− s)α−1f(wn(t), t),

q(wn(t), t) = (t− s)α−1g(wn(s), s).
(16)

As this point the following conditions, lemmas, and remarks for the proof of
the uniqueness and existence should be elaborated on.

(I) Local Lipschitz condition: For each integer n ≥ 1, there exists a positive
constant number Ln such that

|p(w(t), t)− p(y(t), t)|2 ∨ |q(w(t), t)− q(y(t), t)|2 ≤ Ln|w(t)− y(t)|2,

for those w(t), y(t) ∈ Rn with |w(t)| ∨ |y(t)| ≤ n.
(II) Linear growth condition: There exists a positive number L such that

|p(w(t), t)|2 ∨ |q(w(t), t)|2 ≤ L(1 + |w(t)|2),

(III) Monotone condition: there exists a positive constant K such that

w(t)T f(w(t), t) +
1

2
|q(w(t), t)| ≤ K(1 + |w(t)|2)

for all w(t) ∈ Rn.

The following Remark proves the exact solution to equation (14) under the
monotone condition (III).



238 Mohammad Gholamian et al.

Remark 2 Assume the monotone condition (III), there exists a positive con-
stant G such that the solution of (7) satisfies

E( sup
t0≤t≤T

|w(t)|2) ∨E( sup
t0≤t≤T

|y(t)|2) ≤ G, (17)

where G = G(T,K,w0) is a constant independent of h, (h = 1
m be a given

step size with integer m ≥ 1 and T = Nh).

Proof By uncertain’formula and condition (III), we can derive that for t ∈
[t0, T ]

|w(t)|2 = |w0|2 +
∫ t

t0

[2(wT p(w(s), s))

+
1

2
|q(w(s), s)|2]ds+

∫ t

t0

2(wT q(w(s), s))dCs,

we have

1 + |w(t)|2 ≤ 1 + |w0|2 + 2k

∫ t

t0

[1 + |w(s)|2]ds+ 2

∫ t

t0

2(wT q(w(s), s))dCs,

we know

E sup(1 + |w(t)|2) ≤(1 + |w0|2) +E sup

∫ t

t0

2k[1 + |w(s)|2]ds

+E sup |
∫ t

t0

2(wT q(w(s), s))dCs|. (18)

By the Lemma(3) (Burk holder -Davis-Gundy inequality for canonical Liu
process) to show that

E sup |
∫ t

t0

2(w(s)T q(w(s), s))dCs| ≤ 2E(

∫ t

t0

4(|w(s)|2|q(w(s), s)|2)ds) 1
2

≤ 2E(sup(1 + |w(t)|2)
∫ t

t0

4|q(w(s), s)|2ds) 1
2

≤ 3E(sup(1 + |w(t)|2)
∫ t

t0

4k(1 + |w(t)|2)ds) 1
2

≤ 0.5E sup(1 + |w(t)|2)

+
9

2
E

∫ t

t0

4k(1 + |w(t)|2)ds. (19)

Substituting (19) into (18) and using the Hölder inequality

E sup(1 + |w(t)|2) ≤
[
2(1 + |w(0)|2) + 40k

(
E

∫ t

t0

(1 + |w(t)|2)ds
)]

,



A Study on the Existence and Uniqueness 239

so we obtain

E sup(1 + |w(t)|2) ≤
[
2(1 + |w(0)|2) + 80k

(∫ t

t0

E sup(1 + |w(t)|2)ds
)]

.

By the Gronwall inequality, we must get

E sup(|w(t)|) ≤ G

where G = (T, k, w0) is a constant independent of h. Similarly, we can show
that E sup(|y(t)|) ≤ G.

It is known that some functions, such as sin2 w and −|w|2w, do not satisfy
in Lipschitz and Linear growth conditions. Therefore, we prove the following
theorem under weaker conditions that ensure the existence and uniqueness of
the solution to equation (14).

Lemma 5 The sequence of uncertain process {wn}n≥0 is a Cauchy sequence.

Proof Using the same argument in Remark (2), we can obtain

∥ wm(t)− wn(t) ∥2≤ G1

∫ t

0

k
(
∥ wm(t)− wn(t) ∥2

)
ds, (20)

in which G1 = 4T 2α−1

Γ 2(α)(2α−1) . Let βn = supm≥n(∥ wm(t) − wn(t) ∥2), we imply
that

βn ≤ G1

∫ t

0

k(βn−1(t), s)ds. (21)

It is obvious that the function βn(t), n ≥ is well defined and bounded by
Remark (2) and also monotone non-decreasing. So there exist a monotone non-
decreasing function β(t) such that limn→1 βn(t) = β(t). Using the Lebesgue
convergence theorem and taking n → +∞ in above inequality, we get

β(t) ≤ γ

∫ t

0

k(β(t), s). (22)

It means that β(t) = 0 follows from Lemma (3), for all t ∈ [0, T ]. However,
we can see that 0 ≤∥ wm(t)− wn(t) ∥2≤ βn(T ) and βn(T ) → β(T ) = 0 when
n → +∞. So {wn}n≥0 is a Cauchy sequence.

Theorem 3 (Existence and Uniqueness of solution) Under the conditions Lo-
cal Lipschitz condition,Monotone condition,(12) and (13), there exists a unique
solution of equation (14).

Proof Existence: If we denote w(t) by the limit of the sequence {yn}n≥0, re-
peating the proof of Lemma 3.5, then we use the right side of Picard�s iteration
(15) converge to

w0 +
1

Γ (α)

∫ t

0

p(w(s), s)ds+
1

Γ (α)

∫ t

0

q(w(s), s)dC(s). (23)
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Now, we show that (24)satisfied equation (14). Note that

E
∣∣∣ ∫ t

t0

[p(wn+1(s), s)]ds−
∫ t

t0

[p(wn(s), s)]ds
∣∣∣2

+E|
∫ t

t0

[q(wn+1(s), s)]dCs−
∫ t

t0

[q(wn(s), s)]dCs|2

≤ ℵ(T − t0 + 1)

∫ t

t0

E|(wn+1(s), s)− (wn(s), s)|2ds → 0 as n → ∞.

Hence we can let n → ∞ in (12) to obtain that

w(t) = w0 +
1

Γ (α)

∫ t

0

p(w(s), s)ds+
1

Γ (α)

∫ t

0

q(w(s), s)dC(s). (24)

as desired. The existence has been proved.
Uniqueness: Suppose w(t) and z(t) are two solutions of equation (12), using
the same argument as in Lemma (5), we have

∥ w(t)− z(t) ∥2≤ G

∫ t

0

ℵ(∥ w(s)− z(s) ∥2, s)ds. (25)

Using the Lemma (3) again, we can obtain ∥ w(t)−z(t) ∥2= 0 for all t ∈ [0, T ],
which implies that w(t) = z(t). The proof is completed.

4 Conclusion

The existence and uniqueness theorem is one of the most useful and basic
theorems in the theory of uncertain fractional differential equations. However,
there are few people who have considered weaker conditions. In the present
paper, we have aimed to prove a novel existence and uniqueness theorem under
the Local Lipschitz and monotone conditions.
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