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Abstract This paper introduces two families of modified Householder’s method
(HM) that are optimal in line with Kung-Traub conjecture given in [4]. The
modification techniques employed involved approximation of the function deriva-
tives in the HM with divided difference operator, a polynomial function ap-
proximation and the modified Wu function approximation in [17]. These in-
formed the formation of two families of methods that that are optimal and do
not or require function derivative evaluation. The both families do not break-
down when f(·) ≈ 0 as in the case with the HM and many existing modified
HM. From the convergence investigation carried out on the methods, the se-
quence of approximations produced by the methods, converged to solution of
nonlinear equation with order four. The implementation of the methods was
illustrated and numerical results obtained were compared with that of some
recently developed methods.
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1 Introduction

The Householder method (HM) in [2] is one of the traditional iterative methods
for obtaining solution s0 of a nonlinear (NL) equation f(s) = 0. It is given as

sj+1 = sj − ηj

(
1 +

ηj
2

f ′′(sj)

f ′(sj)

)
, j = 0, 1, 2, . . . , (1)

where ηj =
f(sj)
f ′(sj)

. Starting with initial guess s∗, the HM iteratively generates
sequence of approximations that converges to the solution s0 of a NL equation
with convergence order (CO) three. Some major setbacks of the HM includes:

(i) its involvement of second derivative (f ′′(sj) ) evaluation,

(ii) failure of the method when f ′(·) ≈ 0 or f ′(·) = 0 and,

(iii) non-optimal in the sense of Kung-Traub conjecture in [4].

The Kung-Traub conjecture [4] posits that, an IM without memory that re-
quire n distinct function evaluation in one iteration cycle, is optimal if it attain
CO ν = 2n−1.

Sequel to the setbacks itemized in (i)-(iii) above, many researchers have put
forward modifications of the HM with the motivation of dealing with them.
For instance, in the work [1,6–8,13,16], modifications of HM were presented
that resolved problem (i) with no recourse to resolving problems (ii) and (iii).
While the authors in [11] put forward family of methods with reduced num-
ber of function derivative evaluation f ′(·) at two different points from two to
one point, they failed to explicitly eliminate the setback in (ii). In [5,15], the
authors considered modifications of the HM that have the advantages of re-
solving the setbacks (i) and (iii), but failed to deal with setback (ii) also. The
modifications of the HM that have the advantages of resolving the setbacks
itemised in (i)-(iii) above are scarcely available. This is the main motivation
of this work.

From the foregoing, two families of modified HM that does not require
second derivative of function, fail when f(·) ≈ 0 and optimal are developed in
this manuscript. The approach used in the methods development, involved the
use of the divided difference operator, modified Wu function approximation
and a newly introduced polynomial approximation of function derivative.

This manuscript is structured in the following order: Section 1 contains
the review of related literature, while Section 2 presents techniques employed
in the methods development. The test for methods convergence is given in
Section 3. Section 4 put forward results of numerical implementation of the
developed and compared methods. The last section of the manuscript contains
conclusion.
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2 Method Formulation

We acknowledge the traditional HM [2] put forward as in (1). The HM gen-
erates sequence of approximations that converges to solution of NL equations
when implemented. However, the presence of the first and second derivatives
in its iterative procedure, hinders its practical utilisation. This is because the
method collapses when the derivatives f ′(·) ≈ 0 and evaluation of the second
derivative of function incurs additional cost to the iterative process.
To circumvent the presence of second derivative in the HM, Noor and Gupta
in [8] set sj = yj and approximates f ′′(sj) as

f ′′(sj) ≈
f ′(yj)− f ′(sj)

yj − sj
= G (s, y) , (2)

and then obtained a fourth order convergence method as:

sj+1 = sj − ηj

(
1 +

ηj
2

G (s, y)

f ′(sj)

)
. (3)

Although the method in (3) successfully modified HM to a method that does
not require second derivative, its efficiency index (EI) is far less than that of
the HM. The efficiency of Iterative Algorithms for solving NL equations, is
measured using the Ostrowski efficiency index [14] given as ν 1

n . Thus, method
(3) has EI ≈ 1.4142 while HM is EI ≈ 1.4417.
Further, the method (3) fails or breakdown whenever f ′(·) ≈ 0. To eliminate
the problem of breakdown of the iterative process and also make the method
optimal as conjectured by Kung-Traub in [4], we used an obtained polynomial
function approximation P (s, t) to approximate f ′(yj) as

f ′(yj) ≈ f ′(sj)
[
1− 2t+ t2

]
= P (s, t) , (4)

where t =
f(yj)
f(sj)

and the Wu approximation for f ′(sj) in [17] that is given as

f ′(sj) ≈ f ′(sj) + δf(sj), δ ∈ (−1, 1)− {0} . (5)

Define the real-valued (RV) function Q (s, t) (a modified Wu second iteration
stage approximation for f ′(yj)) as

Q (s, t) = [P (s, t) + αf(sj)] + δf(yj), (6)

then a family of modified HM is put forward next.

Algorithm 1 Suppose s∗ an initial guess, then the solution sj+1 of NL equa-
tion can be obtained using the iterative procedure

yj = sj −
f(sj)

f ′(sj) + δf(sj)
,

sj+1 = yj −
f(yj)

Q(s, t)

[
1 +

1

2

f(yj)

Q(s, t)

(
(f ′(sj) + δf(sj))−Q(s, t)

f(sj)

)]
.

(7)
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To put forward the derivative free version of Algorithm 1, consider the ap-
proximation of the derivative f ′(sj) as

f ′(sj) ≈ f [sj , ωj ] + δf(sj), ωj = sj + δ (f(sj))
m
, (8)

where m ≥ 2 and f [·, ·] a divided difference operator. By the definition

f ′(yj) ≈ (f [sj , ωj ] + δf(sj))
[
1− 2t+ t2

]
= R (s, t) , (9)

and the RV functions Φ (s, t) defined as:

Φ (s, t) = [R (α, s) + αf(sj)] + δf(yj), (10)

a new family of derivative free modified HM is provided in Algorithm 2.

Algorithm 2 Suppose s∗ an initial guess and m = 3, then the solution sj+1

of NL equation can be obtained using the iterative procedure

yj = sj −
f(sj)

f [sj , ωj ] + δf(sj)
,

sj+1 = yj −
f(yj)

Φ(s, t)

[
1 +

1

2

f(yj)

Φ(s, t)

(
(f [sj , ωj ] + δf(sj))− Φ(s, t)

f(sj)

)]
,

(11)

3 Convergence Analysis

To prove the convergence of Algorithm 1 and Algorithm 2, suffice to deriving
an equation in the form Dj+1 = ϕDν

j + O(Dν+1
j ) (where the error at jth

iteration point is Dj = sj − s0 ) from the Algorithms by the use of the Taylor
series expansion of the functions f(s) and f ′(s). When this equation is derived,
then ν is referred to as the Algorithm CO. For more details on this technique
see [9,10,12].

Theorem 1 Consider a sufficiently differentiable scalar function f : Ω ⊂ ℜ →
ℜ in domain Ω with a simple solution s0. Then, for s∗ (an initial guess) close
to s0 and utilised in Algorithm 1 implementation, a sequence {sj}j≥0 , (sj ∈ D)
of approximations of s0 will be generated that converges to s0 with CO four,
provided the free parameters α, δ ∈ (−1, 1)− {0} are equal.

Proof . Consider replacing s with sj in Taylor expansion of f ′ (s) and f (s)
about s0, the expansions are obtained next.

f(sj) = f ′(s0)

[
Dj +

4∑
m=2

cmDm
j +O(D5

j )

]
, j=0, 1, 2, . . . (12)

and

f ′(sj) = f ′(s0)

[
1 +

4∑
m=2

mcmDm−1
j +O(D5

j )

]
, j=0, 1, 2, . . . (13)
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where cm = 1
m!

fm(s0)
f ′(s0)

, m ≥ 2.
From the results in (12) and (13), the next expression for y is obtained.

yj =sj −
f(sj)

f ′(sj) + δf(sj)
= (δ + c2)D

2
j

+
(
−δ2 − 2δc2 − 2c22 + 2c3

)
D3

j

+
(
δ3 + 3δ2c2 + 5δc22 + 4c32 − 4δc3 − 7c2c3 + 3c4

)
D4

j +O
(
D5

j

)
.

(14)

Using (14), the Taylor expansion for f(yj) is obtained as

f(yj) = (δ + c2)D
2
j +

(
−δ2 − 2δc2 − 2c22 + 2c3

)
D3

j

+
(
δ3 + 3δ2c2 + 5δc22 + 4c32 + c2 (δ + c2)

2 − 4δc3 − 7c2c3 + 3c4

)
D4

j

+O
(
D5

j

)
.

(15)
From (15) and (12), the expansion for tj is obtained next.

tj =
f(yj)

f(sj)
= (δ + c2)Dj +

(
−δ2 − 3δc2 − 3c22 + 2c3

)
D2

j

+
(
δ3 + 5δ2c2 + 10δc22 + 8c32 − 5δc3 − 10c2c3 + 3c4

)
D3

j +O
(
D4

j

)
.

(16)

From (16), we obtained the expansion for P (s, t) as

P (s, t) = 1− δDj + (δ2 + 3δc2 + 3c22 − c3)δ
2

+ (−δ3 − 6δ2c2 − 11δc22 − 8c32 + 5δc3 + 10c2c3 − 2c4)D
3
j

+ (δ4 + 9δ3c2 + 21c42 + δ2(25c22 − 7c3)− 37c22c3 + 8c23 + 14c2c4

+ δ(35c32 − 32c2c3 + 7c4)− 3c5)D
4
j +O

(
D4

j

)
.

(17)

By combining (15) and (17), the expansion for Q(s, t) is obtained next as

Q(s, t) = [P (s, t) + αf(s)] + δf(yj) = 1 + (α− δ)Dj

+ (2δ2 + αc2 + 4δc2 + 3c22 − c3)D
2
j

+ (−2δ3 − 8δ2c2 − 13δc22 − 8c32 + αc3 + 7δc3 + 7δc3 + 10c2c3 − 2c4)D
3
j

+ (2δ4 + 13δ3c2 + 21c42 + δ(32c22 − 11c3)− 37c22c3 + 8c23 + αc4 + 14c2c4

+ δ(40c32 − 39c2c3 + 10c4)− 3c5)D
4
j +O(D5

j ).

(18)

From (12), (13), (14), (15) and (18), we have:

sj+1 = yj −
f(yj)

Q(α, s)

[
1 +

1

2

f(yj)

Q(α, s)

(
(f ′(sj) + δf(sj))−Q(α, s)

f(sj)

)]
= s0 + (α− δ)(δ + c2)D

3
j

+ (δ3 + 3δ2c2 + 4δc22 + c32 − α(δ + c2)− δc3 − c2c3

+
α

2
(3δ2 + 4δc2 + 4c3))D

4
j +O(D5

j ).

(19)
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Our desire is to reduce the coefficients of Dn
j , n = 2, 3 to zero. This is achiev-

able when the parameters α and δ are equal. That is α = δ. Consequently,
(19) is reduced to

sj+1 = s0 +

(
(δ + c2)(3δ

2 + 5δc2 + 2c22 − 2c3)

2

)
D4

j +O(D5
j ). (20)

But Dj+1 = sj+1 − s0. Therefore, from (20) we have

Dj+1 =

(
(δ + c2)(3δ

2 + 5δc2 + 2c22 − 2c3)

2

)
D4

j +O(D5
j ). (21)

By comparing the error expression in (21) with the general error equation
Dj+1 = ϕDν

j +O(Dν+1
j ), we conclude that the CO (ν) of Algorithm 1 is four.

This completes the proof.

3.1 Algorithm 1 concrete member

For δ = 0.001, a concrete member that falls under Algorithm 1 is as following:

Algorithm 3 Suppose s0 an initial guess, then the solution sk+1 of NL equa-
tion can be obtained using the iterative procedure

yj = sj −
f(sj)

f ′(sj)− 0.001f(sj)
,

sj+1 = yj −
f(yj)

Q(s, t)

[
1 +

1

2

f(yj)

Q(s, t)

(
(f ′(sj)− 0.001f(sj))−Q(s, t)

f(sj)

)]
.

(22)

Theorem 2 Consider a sufficiently differentiable scalar function f : Ω ⊂ ℜ →
ℜ in domain Ω with a simple solution s0. Then, for s∗ (an initial guess) close
to s0 and utilised in Algorithm 2 implementation, a sequence {sj}j≥0 , (sj ∈ D)
of approximations of s0 will be generated that converges to s0 with CO four,
provided the free parameters α, δ ∈ (−1, 1)− {0} are equal.

Proof . The proof follows same procedures used in the proof of Theorem 1.
Consequently, the error equation is obtained as:

sj+1 = s0 +

(
(δ + c2)(3δ

2 + 5δc2 + 2c22 − 2c3)

2

)
D4

j +O(D5
j ). (23)
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3.2 Algorithm 2 concrete member

For δ = 0.001, a typical member of Algorithm 2 is put forward as:

Algorithm 4 Suppose s0 an initial guess, then the solution sk+1 of NL equa-
tion can be obtained using the iterative procedure

yj = sj −
f(sj)

f [sj , ωj ]− 0.001f(sj)
,

sj+1 = yj −
f(yj)

Φ(s, t)

[
1 +

1

2

f(yj)

Φ(s, t)

(
(f [sj , ωj ]− 0.001f(sj))− Φ(s, t)

f(sj)

)]
.

(24)

4 Numerical Results

The concrete members (Algorithm 3 (Alg 3) and Algorithm 4 (Alg 4)) of
methods developed (Algorithm 1 and Algorithm 2) in this work are tested in
this section to verify their performance when utilised to solve NL equations.
For performance comparison sake, the obtained computation outputs by the
developed methods were put side by side with the outputs of some existing CO
four methods that are also modification of HM and are optimal. The compared
methods includes Nadeem et al., method (NM) in [5] given as:

sj+1 = yj −
f(yj)

F (sj , yj)
−

(
f2(yj)G(sj , yj)

2F 3(sj , yj)

)
,

F (sj , yj) =
2[f(sj)− f(yj)]

xj − yj
− f ′(sj),

G(sj , yj) =
6[f(sj)− f(yj)]− 2(sj − yj)[2f

′(sj) + F (sj , yj)]

(sj − yj)2
.

(25)

and Sarima et al., method (SM) in [15] and presented as:

sj+1 = yj −
f(yj)

F (sj , yj)
−M(sj , yj)

f2(yj)

2f ′3(sj)
,

M(sj , yj) =
10f(yj) + 4f(sj)

(yj − sj)2
,

(26)

where yj = sj − (f(sj)/f
′(sj)).

The computational CO νcoc due to Jay in [3] given as

νcoc =
log |f(sj+1)|
log |f(sj)|

, (27)

number of iterations to achieve convergence (NIT) and absolute function of
last iteration point value (|f (sj)|) obtained from each method were used for
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comparison. To obtain computation results, programs were written and im-
plemented in MAPLE 2017 software domain using a computer with the spec-
ifications: 2GB RAM processor Intel Celeron(R). To terminate all programs
execution, a tolerance of |f (sj)| ≤ 10−1000 was adopted. In order to minimize
truncation error, all computation outputs were given in 2000 digits of preci-
sion. The format for computation result presentation is X−Y = X × 10−Y ,
where X,Y ∈ ℜ.
Table 1 presents the NL equations fj(s) = 0 utilized for testing the methods
applicability and computational comparison.

Table 1 Test equations

fi(s) = 0 s∗

f1(s) = 2s− ln s− 7s = 0 4.2199064837 . . .
f2(s) = s3 − 9s+ 1 = 0 2.9428200577 . . .
f3(s) = s− 3 ln (s) = 0 1.8571838602 . . .

f4(s) = −20s5 − s
2
+ 1

2
= 0 0.4276772969 . . .

f5(s) = s(s2 − 1) + 3 = 0 −1.6716998816 . . .
f6(s) = 1− (s2 − sin2(s)) = 0 1.4044916482 . . .

4.1 Results Discussion

The computational outcomes obtained when the developed Alg 3, Alg 4 and
the compared methods (NM and SM) were used to solve the NL equations in
Table 1, are presented in Table 2-5. From Table 2-4, observe that Alg 3 and
Alg 4 solved the NL equations f1(s), f2(s) and f3(s) when f ′(s) = 0. While
the compared methods failed because of the presence of evaluation of quotients
with zero as divisor. That is, the evaluation of f ′(·) vanished. Furthermore,
for NL equations with non-vanishing f ′(·), the Alg 3 and Alg 4 in most cases,
performed better than the compared methods.

Table 2 Methods results comparison for f1(s) = 0

Methods s0 NIT |f(sj+1)| νcoc
NM Failed -
SM Failed -

Alg 3 0.5 7 1.5−1131 4.0
Alg 4 10 2.4−1276 4.0
NM 5 5.6−1264 4.0
SM 5 4.1−1310 4.0

Alg 3 3.0 5 2.0−1290 4.0
Alg 4 5 8.9−1297 4.0
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Table 3 Methods results comparison for f2(s) = 0

Methods s0 NIT |f(sj+1)| νcoc
NM Failed -
SM Failed -

Alg 3
√
3 12 9.3−0813 4.0

Alg 4 6 4.2−1584 4.0
NM 5 2.1−0495 4.0
SM 6 1.8−0846 4.0

Alg 3 2.5 5 3.8−0632 4.0
Alg 4 5 6.3−0694 4.0

Table 4 Methods results comparison for f3(s) = 0

Methods s0 NIT |f(sj+1)| νcoc
NM Failed -
SM Failed -

Alg 3 3.0 10 1.0−1999 4.0
Alg 4 10 7.2−1480 4.0
NM 9 8.2−1050 4.0
SM 6 3.9−0698 4.0

Alg 4 0.5 6 1.5−0993 4.0
Alg 6 6 5.3−1030 4.0

Table 5 Methods results comparison for f4(s) = 0, f5(s) = 0 and f6(s) = 0

f(s) Methods s0 NIT |f(sj+1)| νcoc
NM 6 5.73−0576 4.0
SM 27 3.2−1878 4.0

f4(s) Alg 3 0.26 6 5.1−1328 4.0
Alg 4 6 1.1−1197 4.0
NM Failed -
SM 22 8.7−0610 4.0

f5(s) Alg 3 0.0 8 7.3−1634 4.0
Alg 4 13 8.8−1025 4.0
NM 7 8.7−0762 4.0
SM 17 2.9−0650 4.0

f6(s) Alg 3 0.5 7 7.4−1054 4.0
Alg 4 7 9.4−0907 4.0

5 Conclusion

In this manuscript, the HM have been successfully modified to attain opti-
mal CO four and further enhanced to not require the evaluation of function
derivatives in its implementation. The presented methods, also possess the
advantages of obtaining solution of NL equations even when f ′(s) = 0 or
f ′(s) ≈ 0. These results, are the major advantages of the methods presented
herein, over existing modified HM in literature.
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