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Abstract In this paper, we deal with the existence of a positive solution for
the following fractional discrete boundary-value problem{

T+1∇α
k (k∇α

0 (u(k))) = λf(k, u(k)), k ∈ [1, T ]N0
,

u(0) = u(T + 1) = 0,

where 0 < α < 1 and k∇α
0 is the left nabla discrete fractional difference and

T+1∇α
k is the right nabla discrete fractional difference f : [1, T ]N0 ×(0,+∞) →

R may be singular at t = 0 and may change sign and λ > 0 is a parameter.
The technical method is variational approach for differentiable functionals. An
example is included to illustrate the main results.

Keywords Discrete fractional calculus · Discrete nonlinear boundary value
problem · Non trivial solution · Variational methods · Critical point theory

Mathematics Subject Classification (2010) 26A33 · 39A10 · 39A27

1 Introduction

Initial and boundary value problems in discrete fractional calculus play a fun-
damental role in different fields of research, for example in Biology, Atici and
Şengül introduced and solved Gompertz fractional difference equation for tu-
mor growth models [5]. In [6] authors studied multiple positive solutions of
singular discrete boundary value problems using variational methods. It is well
known that variational methods is an important tool to deal with the prob-
lems for differential and difference equations. Variational methods for dealing
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with fractional difference equations with boundary value conditions have ap-
peared in [10]. More, recently, in [9,13–16], the existence and multiplicity of
solutions for nonlinear discrete boundary value problems have been investi-
gated by adopting variational methods. In [7] authors employed the critical
point theory to establish the existence of multiple solutions of some regular
as well as singular discrete boundary value problems. Other results on dis-
crete boundary value problems can be found in [4,17] in the nonsingular case
and in [18–20,11] in the singular case. The first concepts of fractional nabla
differences traces back to the works of Gray and Zhang [23].

We refer the reader to the new monograph [26] that works for differential
and integral equations and systems and for many theoretical and applied prob-
lems in mathematics, mathematical physics, probability and statistics, applied
computer science and numerical methods. Also we refer the reader to the re-
cent monograph on the introduction to fractional nabla calculus [12]. Another
well-known monograph is [24] that is devoted to the systematic and compre-
hensive exposition of classical and modern results in the theory of fractional
integrals and derivatives and their applications.

There seems to be increasing interest in the existence of solutions to bound-
ary value problems for finite difference equations with fractional difference
operator during the last two decades. In last decades, some researchers inves-
tigated q-fractional difference equations. Later, q-fractional boundary value
problems considered by many researchers; see for instance, [25] and references
therein. The other important tool in the study of nonlinear difference equations
is upper and lower solution method; see, for instance, [18,11] and references
therein. Morse theory is also other tool in the study of nonlinear fractional
differential equations [21].

The aim of this paper is to establish the existence of non-trivial solution
for the following discrete boundary-value problem{

T+1∇α
k (k∇α

0 (u(k))) = λf(k, u(k)), k ∈ [1, T ]N0
,

u(0) = u(T + 1) = 0,
(1)

where 0 < α < 1 and k∇α
0 is the left nabla discrete fractional difference and

T+1∇α
k is the right nabla discrete fractional difference and

∇u(k) = u(k)− u(k − 1),

is the backward difference operator and λ > 0 is a parameter and T ≥ 2 is
fixed positive integer and N1 = {1, 2, 3, . . . } and TN = {. . . , T − 2, T − 1, T}
and [1, T ]N0 is the discrete set {1, 2, . . . , T − 1, T} = N1

∩
TN and we only

assume that f : [1, T ]N0
× (0,∞) → R satisfies

a0(k) ≤ f(k, t) ≤ a1(k)t
−γ , (k, t) ∈ [1, T ]N0

× (0, t0) (2)
for some nontrivial functions a0, a1 > 0 and γ, t0 > 0, so that it may be
singular at t = 0 and may change sign.

In this paper we ensure an exact interval of the parameter λ, in which
the problem (1) admits at least a positive solution. Here, we point out the
following our main result.
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Theorem 1 If (2) holds and

lim sup
t→∞

f(k, t)

t
< λ1, k ∈ [1, T ]N0

, (3)

then (1) has a positive solution for any λ ∈
[
lim supt→∞

f(k,t)
t , λ1

)
.

The rest of this paper is arranged as follows. In Section 2, we provide some basic
definitions and preliminary results and fundamental functionals and lemmas.
In Section 3, we provide our main results and finally, we illustrate the result
by giving example.

2 Preliminaries

The following definitions will be helpful for our discussion.

Definition 1 [3] (i) Let m be a natural number, then the m rising factorial
of t is written as

tm =

m−1∏
k=0

(t+ k), t0 = 1. (4)

(ii) For any real number, the α rising function is increasing on N0 and

tα =
Γ (t+ α)

Γ (t)
, such that t ∈ R\{. . . ,−2,−1, 0}, 0α = 0. (5)

Definition 2 Let f be defined on Na−1

∩
b+1N, a < b, α ∈ (0, 1), then the

nabla discrete new (left Gerasimov-Caputo) fractional difference is defined by

(
C
k ∇α

a−1f
)
(k) =

1

Γ (1− α)

k∑
s=a

∇sf(s)(k − ρ(s))−α, k ∈ Na, (6)

and the right Gerasimov-Caputo one by

(
C
b+1∇α

kf
)
(k) =

1

Γ (1− α)

b∑
s=k

(−∆sf)(s)(s− ρ(k))−α, k ∈ bN, (7)

and in the left Riemann-Liouville sense by

(
R
k ∇α

a−1f
)
(k) =

1

Γ (1− α)
∇k

k∑
s=a

f(s)(k − ρ(s))−α, k ∈ Na,

=
1

Γ (−α)

k∑
s=a

f(s)(k − ρ(s))−α−1, k ∈ Na,

(8)
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and the right Riemann-Liouville one by

(
R
b+1∇α

kf
)
(k) =

1

Γ (1− α)
(−∆k)

b∑
s=k

f(s)(s− ρ(k))−α, k ∈ bN,

=
1

Γ (−α)

b∑
s=k

f(s)(s− ρ(k))−α−1, k ∈ bN,

(9)

where ρ(k) = k − 1 be the backward jump operator.

For example, Let f(k) = 1 be defined on Na−1

∩
b+1N, therefore from (6) and

(7), we have
C
b+1∇α

k1 =C
k ∇α

a−11 = 0, k ∈ Na

∩
bN. (10)

The relation between the nabla left and right Gerasimov-Caputo and Riemann-
Liouville fractional differences are as follow:

(
C
k ∇α

a−1f
)
(k) =

(
R
k ∇α

a−1f
)
(k)− (k − a+ 1)−α

Γ (1− α)
f(a− 1), (11)

(
C
b+1∇α

kf
)
(k) =

(
R
b+1∇α

kf
)
(k)− (b+ 1− k)−α

Γ (1− α)
f(b+ 1). (12)

Thus by (10), (11), and (12), we have for any k ∈ Na

∩
bN,

R
b+1∇α

k1 =
(b+ 1− k)−α

Γ (1− α)
, R

k ∇α
a−11 =

(k − a+ 1)−α

Γ (1− α)
. (13)

Regarding the domains of the fractional type differences we observe:

(i) The nabla left fractional difference k∇α
a−1 maps functions defined on

a−1N to functions defined on aN.
(ii) (The nabla right fractional difference b+1∇α

k maps functions defined on
b+1N to functions defined on bN.

As in [8] one can show that, for α → 0, one has k∇α
a (f(k)) → f(t) and

for α → 1, one has k∇α
a (f(k)) → ∇f(t). We note that the nabla Riemann-

Liouville and Gerasimov-Caputo fractional differences, for 0 < α < 1, coincide
when f vanishes at the end points, that is, f(a − 1) = 0 = f(b + 1) (see
[1]). Indeed, when 0 < α < 1, those conclude from (11) and (12). So, for
convenience, from now on we will use the symbol ∇α instead of R∇α or C∇α.
Let λ1 > 0 be the first and smallest eigenvalue and λ2 > 0 be the last and
biggest eigenvalue of{

T+1∇α
k (k∇α

0 (u(k))) = λu(k), k ∈ [1, T ]N0
,

u(0) = u(T + 1) = 0,
(14)
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where

λ1 = min
u∈W\{0}

u†Au
u†u

= min
u∈W\{0}

∑T
k=1 | (k∇α

0u) (k)|2∑T
k=1 |u(k)|2

,

λ2 = max
u∈W\{0}

u†Au
u†u

= max
u∈W\{0}

∑T
k=1 | (k∇α

0u) (k)|2∑T
k=1 |u(k)|2

,

which u† denotes the transpose of u and u†Au
u†u

is called a Rayleigh quotient and
A is called a matrix structure form of operator T+1∇α

k (k∇α
0 (u(k))). Taking

the definition A into account, (14) converts to

A


u(1)
u(2)
u(3)

...
u(T )

 = λ


u(1)
u(2)
u(3)

...
u(T )

 .

where A := C†C and

C =


γ1 0 0 · · · 0
γ2 γ1 0 · · · 0
γ3 γ2 γ1 · · · 0
...

...
...

...
...

γT γT−1 γT−2 · · · γ1


By (4), γi := −αΓ (i−1−α)

Γ (i).Γ (1−α) for any i = 1, 2, 3, 4, . . . , T . It is clear that γ1 = 1 and
γ2 = −α and γi+1 = i−1−α

i γi and −α < γi−1 < γi < 0 for any i = 3, 4, . . . , T .
Remark 1 The matrix C = [cij ] has all the elements below the main diagonal
as negative. The diagonal elements of the matrix C are 1, that is, cii = 1,
i = 1, 2, . . . , T and the determinant of the matrix C = [cij ] where denoted by
the symbol |C| is 1 and then that is non-singular or invertible.
Remark 2 ([22]) The matrix C−1 is lower triangular and it is obtained from
the identity matrix In by performing the same sequence of elementary row
operations as were used to convert C−1 to In. By elementary row operations
method, the diagonal elements of the matrix C−1 = [cij ] are 1 and it has all
the elements below the main diagonal as positive.
So, the matrix A = C†C is real symmetric matrixes and by Remark 1, the
determinant of the matrix A is 1 and A is invertible and the determinant of
the matrix A−1 is 1.
Taking the definition A into account, (1) converts to

A


u(1)
u(2)
u(3)

...
u(T )

 = λ


f(1, u(1))
f(2, u(2))
f(3, u(3))

...
f(T, u(T ))

 .
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Now, we present summation by parts formula in new discrete fractional cal-
culus.

Theorem 2 ( [2, Theorem 4.4] Integration by parts for fractional difference)
For functions f and g defined on Na

∩
bN, a ≡ b (mod 1), and 0 < α < 1, one

has
b∑

k=a

f(k)
(
k∇α

a−1g
)
(k) =

b∑
k=a

g(k)
(
b+1∇α

kf
)
(k). (15)

Similarly,
b∑

k=a

f(k)
(
b+1∇α

k g
)
(k) =

b∑
k=a

g(k)
(
k∇α

a−1f
)
(k). (16)

3 Main Results

In order to give the variational formulation of the problem (1), let us define
the finite T−dimensional Hilbert space

W := {u : [0, T + 1]N0 → R : u(0) = u(T + 1) = 0},

which W is equipped with the usual inner product and the norm

⟨u, v⟩ =
T∑

k=1

u(k)v(k), ∥u∥2 :=

(
T∑

k=1

|u(k)|2
) 1

2

.

It is known that the following norm

∥u∥ =

{
T∑

k=1

| (k∇α
0u) (k)|2

} 1
2

,

is an equivalent norm in W . It is clear that λ1 and λ2 are respectively the first
and the last eigenvalues of A and

λ1 = min
u∈W\{0}

∥u∥2

∥u∥22
, λ2 = max

u∈W\{0}

∥u∥2

∥u∥22
.

So for any u ∈ W , we have,√
λ1∥u∥2 < ∥u∥ <

√
λ2∥u∥2. (17)

Therefor from (17), ∥u∥ → +∞ if and only if ∥u∥2 → +∞.
Let Φ : W → R be the functional

Φ(u) :=
1

2

T∑
k=1

| (k∇α
0u) (k)|2. (18)
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An easy computation ensures that Φ turns out to be of class C1 on W and
Gateaux differentiable with

Φ′(u)(v) =

T∑
k=1

(k∇α
0 (u(k))) (k∇α

0 v(k)) , for all u, v ∈ W.

To study the problem (1), for every λ > 0, we consider the functional Iλ,g :
W → R defined by

Iλ,g(u) := Φ(u)− λΨ(u), Ψ(u) :=

T∑
k=1

G(k, u(k)), (19)

where G(k, u) =
∫ u

0
g(k, t)dt where g ∈ C([1, T ]N0

× R).

Lemma 1 The function u be a critical point of Iλ,g in W , iff u be a solution
of the problem (1).

For the approach of Lemma 1 see [13, Lemma 3.1].

Lemma 2 If

lim sup
t→∞

g(k, t)

t
< λ1, k ∈ [1, T ]N0 , (20)

holds, then Iλ,g has a global minimizer for any λ ∈ [lim supt→∞
g(k,t)

t , λ1).

Proof By (20), for any λ ∈ [lim supt→∞
g(k,t)

t , λ1), there exists 1 < r2 such
that

G(k, t) ≤ λ

2
|t|2, for any (k, t) ∈ [1, T ]× R \ ([−r2, r2]).

Since G is continuous, then G(k, t) is bounded for any (k, t) ∈ [1, T ]× [−r2, r2],
so we can choose C > 0 such that

G(k, t) ≤ λ

2
|t|2 + C, for all (k, t) ∈ [1, T ]× R, (21)
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by (17) and (21), we have

Iλ,g(u) = Φ(u)− λΨ(u)

=
1

2

T∑
k=1

| (k∇α
0 u) (k)|2 − λ

T∑
k=1

G(k, u(k))

=
1

2
∥u∥2 − λ

T∑
k=1

G(k, u(k))

≥ 1

2
∥u∥2 − λ

2

T∑
k=1

|u(k)|2 − TC

=
1

2
∥u∥2 − λ

2
∥u∥22 − TC

≥ 1

2
∥u∥2 − λ

2λ1
∥u∥2 − TC

=
1

2
(1− λ

λ1
)∥u∥2 − TC,

therefore as ∥u∥ → +∞, Iλ,g(u) → +∞. Hence Iλ,g is coercive and bounded
from below for any λ ∈ [lim supt→∞

g(k,t)
t , λ1). So Iλ,g has a global minimizer

for any λ ∈ [lim supt→∞
g(k,t)

t , λ1) (see [27]).
We obtain the next result which guarantees the same conclusion of the Strong
maximum principle.
Lemma 3 If λ > 0 and u ∈ W be a non-trivial solution to problem{

T+1∇α
k (k∇α

0 (u(k))) = λa0(k), k ∈ [1, T ]N0
,

u(0) = u(T + 1) = 0,
(22)

then u > 0.
Proof By taking account Remark 1, one can conclude that |A| = |C||C†| = 1,
hence the matrix A is non-singular or invertible and the equation (22) becomes

u(1)
u(2)
u(3)

...
u(T )

 = λA−1


a0(1)
a0(2)
a0(3)

...
a0(T )

 ,

where A−1 = [aij ], i, j ∈ [1, T ]N0
is the inverse of A and A−1 = C−1{C−1}†.

Taking account Remark 2, C−1 has all the elements below the main diagonal as
positive and {C−1}† has all the elements above the main diagonal as positive.
So A−1 has all the elements as positive. Since λ > 0 and a0(k) > 0 for every
k ∈ [1, T ]N0

and aij > 0, i, j ∈ [1, T ]N0
, one can conclude that

u(k) = λ(ak1 + ak2 + · · ·+ akT )a0(k) > 0, for every k ∈ [1, T ]N0 .
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Here, we can provide the proof of main result of this paper (Theorem 1) which
that was stated before in Introduction section.
Proof Since a0 ∈ C([1, T ]N0 × R) and

lim sup
t→∞

a0(k)

t
= 0 < λ1, k ∈ [1, T ]N0

,

by Lemma 2 the functional Iλ,a0 has a global minimizer for any λ ∈ [0, λ1), so
by Lemma 1, the problem (22) has a solution u0 ∈ W for any λ ∈ [0, λ1) also
since a0(k) > 0 for any k ∈ [1, T ]N0

by Lemma 3 this solution is positive. Fix
ε ∈ (0, 1] small enough such that u := εu0 < t0. Then by (2)

T+1∇α
k (k∇α

0 (u(k))) = λεa0(k) ≤ λεf(k, u(k)) ≤ λf(k, u(k)), (23)

so u is a sub-solution of (1). Let

fu(k, t) =

{
f(k, t), t ≥ u(k),

f(k, u(k)), t < u(k).
(24)

so fu(k, t) ∈ C([1, T ]N0
×R). By similar argument in [6], due to (3), there are

λ ∈ (0, λ1) and T > t0 such that f(k, t) ≤ λt for any (k, t) ∈ [1, T ]N0
× (T,∞).

Then taking account to (2), one can conclude that

fu(k, t) ≤ a1(k)u
−γ +max f([1, T ]N0 × [t0, T ]) + λt, ∀t ≥ 0, (25)

and then lim supt→∞
fu(k,t)

t ≤ λ < λ1 and due to fu ∈ C([1, T ]N0 × R), by
Lemma 2, the modified problem{

T+1∇α
k (k∇α

0 (u(k))) = λfu(k, u(k)), k ∈ [1, T ]N0
,

u(0) = u(T + 1) = 0,
(26)

has a solution u for any λ ∈ [lim supt→∞
fu(k,t)

t , λ1) = [lim supt→∞
f(k,t)

t , λ1).
If u < u by (26) and (24) and (23), one has

T+1∇α
k (k∇α

0 (u(k))) = λfu(k, u(k)) = λf(k, u(k))

≥ T+1∇α
k (k∇α

0 (u(k))) ,

so, T+1∇α
k (k∇α

0 (u− u(k))) ≥ 0 for k ∈ [1, T ]N0 and then by Lemma 3, u ≥ u
and it is a contradiction. So u ≥ u and then by (26), one can conclude that u

is a solution of (1) for any λ ∈ [lim supt→∞
f(k,t)

t , λ1) and due to u ≥ u > 0,
that is positive.
We now present an example to illustrate the result of Theorem 1.
Example 1 the singular fractional problem{

T+1∇α
k (k∇α

0 (u(k))) =
λ

u2(k) , k ∈ [1, 9],

u(0) = u(10) = 0,

has at least one positive solution u0 for any λ ∈ [0, λ1), since the function
f(k, t) = 1

t2 satisfies (2) and lim sup
t→+∞

f(k,t)
t = 0.
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4 Conclusion

Most phenomena in the nature could be modeled by different types of frac-
tional difference and differential equations with initial or boundary conditions.
Recently some scientists have been studying the role of fractional calculus
in better describing of physical phenomena or biological phenomena. They
have found that by using the fractional difference equations they can pro-
vide a better representation by some physical or biological concepts. Thus, we
should investigate distinct fractional difference equations to increase our abil-
ity for exact modelings of more phenomena. In this work, by using variational
method on differentiable functionals, we study a singular fractional problem
with Dirichlet boundary value conditions. We provide an example to illustrate
our main result.
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