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Abstract Let G be a molecular graph. The eccentric connectivity index,
ζc(G) , is defined as, ζc(G) =

∑
u∈V (G)

deg(u)ecc(u), where deg(u) denotes the

degree of vertex u and ecc(u) is the largest distance between u and any other
vertex v of G. In this paper, an exact formula for the eccentric connectivity
index of nanostar dendrimer NS3[n] is given.

Keywords Eccentric connectivity index · Nanostar dendrimer · Topological
index.

1 Introduction

Chemical graph theory is one of the branches of mathematical chemistry.
In chemical graph theory, a variety of concepts from graph theory are used
to model chemical phenomena graphically. In this modeling, each atom is
represented by a vertex and each bond between two atoms is represented by
an edge. A topological index for an undirected simple graph G is a numer-
ical value that is invariant under all graph isomorphisms which correlates
to its Physico-chemical properties. Topological indices are used for studying
QSAR (quantitative structure-activity relationships) and QSPR (quantitative
structure-property relationships) for foretelling many attributes of chemical
compounds and their biological properties. Various studies have been per-
formed on different topological indices [1–11].

Dendrimers are highly ordered, branched polymeric molecules. They have
many applications in gene therapy, nanotechnology, medicine production, and
other fields. Every dendrimer is a macromolecule which made of a core with
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tree-like arms or branches named dendrons. The zero generation of a dendrimer
is the core molecule of dendrimer without dendrons. Each generation of a
dendrimer is made by adding some new branches along the branches of the
previous generation with a specific rule. Our aim in this study is to investigate a
special topological property of dendrimers. The molecular graph of a molecule
M is a graph with the finite set of all atoms as its vertex set and chemical
bonds are the edges of this graph. We use the notations G (M), G for short,
for this graph, V(G) for its vertex set, and E(G) for the set of all edges. For
each vertex u, deg(u) denotes the degree of u. If x, y ∈ V (G) , then the length
of a minimum path connecting x and y is named the distance between x and
y and denoted by d(x,y).
Sharma, Goswami, and Madan proposed the eccentric connectivity index of
the molecular graph G which is defined as

ζc(G) =
∑

u∈V (G)

deg(u)ecc(u),

where ecc(u) = max{d(u, v)|v ∈ V (G)} [11].
Ashrafi and Saheli computed the eccentric connectivity index of nanos-

tar dendrimers NS1[n] and NS2[n], see [3,10] for details. In this study, we
are going to comput the eccentric connectivity index of nanostar dendrimer
NS3[n].

2 MAIN RESULTS AND DISCUSSION

NS1[n], NS2[n] and NS3[n] are three types of dendrimers with n generations.
NS1[n] (for n=3) is depicted in Fig. 1 and its generator is shown in Fig. 2.

Fig. 1 The molecular graph of NS1[3]

In [10], Saheli and Ashrafi computed the eccentric connectivity index of
nanostar dendrimer NS1[n] as

ζc(NS1[n]) = 135n× 2n+2 + 135× 2n − 50n+ 179.
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Fig. 2 The core of NS1[n]

NS1[n] (for n=2), and its core, are shown in Figs. 3 and 4, respectively.
In [3], Ashrafi and Saheli computed the eccentric connectivity index of NS2[n]
as

ζc(NS2[n]) = 420n× 2n + 60× 2n − 110n+ 40.

Fig. 3 The molecular graph of NS2[2]

Fig. 4 The core of NS2[n]

Now, we consider nanostar dendrimer where (Figs. 5 and 6). In the follow-
ing we try to comput the eccentric connectivity index of NS3[n].

Theorem 1 The eccentric connectivity index of nanostar dendrimer NS3[n],
is computed as

ζc(NS3[n]) = 29n× 2n+5 + 741× 2n+1 − 104n− 98, n ≥ 1.

Proof Considering Figs. 7, 8 and Table 1. It can be seen that there exist 22
types of vertices in NS3[n], based on their positions in branches of NS3[n]



26 Morteza Alishahi

Fig. 5 The molecular graph of NS3[1]

Fig. 6 The molecular graph of NS3[2]

(Fig. 8). Therefore, we have:

ζc(NS3[n]) =
∑

u∈V (NS3[n])

deg(u)ecc(u)

= 2× (8n+ 19)× 2n+2 + 2× (8n+ 18)× 22n+2 + 3× (8n+ 17)× 2n+1

+ 2× (8n+ 16)× 2n+1 + 2× (8n+ 15)× 2n+1 + 3× (8n+ 14)× 22n+1

+ 2× (8n+ 15)× 2n+1 + 3× (8n+ 13)× 2n+1 + 3× (8n+ 18)× 2n+1

+ 2× (8n+ 17)× 22n+1 + 2× (8n+ 16)× 2n+1 + 3× (8n+ 15)× 2n+1

+ 2× (8n+ 16)× 2n+1 + 3× (8n+ 14)× 22n+1 + 1× (8n+ 15)× 2n+1

+ 2× (8n+ 12)× 2n+1 + 2× (8n+ 11)× 2n+1

+ 2×
n−1∑
k=0

(8n− 4k + 10)× (2n−k+1) + 2×
n−1∑
k=0

(8n− 4k + 9)× (2n−k+1)

+ 2× (8n+ 16)× 2n+1 + 2×
n−1∑
k=0

(8n− 4k + 8)× (2n−k+1)

+ 3×
n−2∑
k=0

(8n− 4k + 7)× (2n−k) + 3× (4n+ 11)× 2 + 2× (4n+ 10)× 2

= 29n× 2n+5 + 741× 2n+1 − 104n− 98
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Table 1 Types of vertices in NS3[n].

Layer Types of vertices Frequences ecc(u) deg(u)
n 1 2n+2 8n+19 2
n 2 2n+2 8n+18 2
n 3 2n+1 8n+17 3
n 4 2n+1 8n+16 2
n 5 2n+1 8n+15 2
n 6 2n+1 8n+14 3
n 7 2n+1 8n+13 3
n 8 2n+1 8n+15 2
n 9 2n+1 8n+18 3
n 10 2n+1 8n+17 2
n 11 2n+1 8n+16 2
n 12 2n+1 8n+15 3
n 13 2n+1 8n+16 2
n 14 2n+1 8n+14 3
n 15 2n+1 8n+15 1
n 16 2n+1 8n+12 2
n 17 2n+1 8n+11 2
n 18 2n+1 8n+10 2
n 19 2n+1 8n+9 2
n 20 2n+1 8n+8 2
n 21 2n 8n+8 3

For 1 ≤ i ≤ n− 1
i 18 2i+1 8i+14 2
i 19 2i+1 8i+13 2
i 20 2i+1 8i+12 2
i 21 2i 8i+11 3
i 22 2 4i+10 2

Fig. 7 The eccentricity of vertices in a quarter of NS3[2]
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Fig. 8 Types of vertices in a quarter of NS3[2]
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