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Abstract Assume we have a set of k colors and to each vertex of a graph
G we assign an arbitray of these colors. If we require that each vertex to set
is assigned has in its closed neighborhood all k colors, then this is called the
generalized k-rainbow dominating function of a graph G. The corresponding
γgkr, which is the minimum sum of numbers of assigned colors over all vertices
of G, is called the gk-rainbow domination number of G. In this paper, we
present a linear algorithms for determining a minimum generalized 2-rainbow
dominating set of a tree and on GP (n, 2).
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1 Introduction

Domination and its variations in graphs have been extensively studied, c.[1,2].
For a graph G = (V,E), a set S is a domination set if every vertex in V\S
is adjacent to a vertex in S. The domination number γ(G) is the minimum
cardinality of a dominating set of G. We call a dominating set of cardinality
γ(G) a γ(G)-set. For subsets S, T ⊆ V , the set S is said to dominate T if every
vertex of T is adjacent to a vertex of S.
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Domination represents situation in which each vertex location that a guard
does not occupy needs to have a guard in a closed neighboring vertex location.
In these situations, only one type of guard is considered. Assume a more com-
plex situation where there are different types of guards (let there be k such
types), and we require that each vertex location that is not occupied with a
guard has in its closed neighborhood all types of guards. [10] From a practi-
cal point of view, suppose 5 mechanics in a workshop are doing the same job
and each of them needs 7 different tools. Why only a mechanic who has no
tools should have access to all the tools in his neighborhood?! Rather, this
condition should be considered for all of them. That is, a mechanic who only
has one, two, three, . . . or six tools should have access to 7 required tools
around him. Therefore, I with change the definition in the following article.
”All graph vertices in their neighborhood see all labels.” This relaxation leads
to the following definitions.

Let G be a graph and let f be a function that assigns to each vertex a set
of colors chosen from the set {1, 2}; that is, f:V(G)→ P{(1, 2)}. If for each
vertex v ∈ V (G) such that f(v) = ∅ we have

∪
u∈V (G) f(u) = {1, 2} . Type

domination in graphs Assume we have a set of 2 colors and to each vertex of a
graph G we assign an arbitary of these colors. If we require that each vertex to
which an empty set is assigned has in its neighborhood all 2 colors, then this
is called the 2-rainbow dominating function of a graph G. The corresponding
γ2r, which is the minimum sum of numbers of assigned colores over all vertices
of G, is called the 2-rainbow domination number of G.

Definition 1 Let G be a graph and let f be a function that assigns to each
vertex a set of colors chosen from the set {1, . . . , k}; that is, f : V (G) →
p{(1, . . . , k)}. If for each vertex v ∈ V (G) , we have

∪
u∈V (G) f(u) = {1, . . . , k} ;

then f is called generalized k-rainbow dominating function(gkrdf) of G. The
weight, ω(f), of a function f is defined as ω(f) =

∑
v∈V (G)|f(v)|. Given a

graph G, the minimum weight of a GKRDF is called the generalized k-rainbow
dominating number of G, which we denote by aγgkr(G) .

Definition 2 Let G be a graph and let f be a function that assigned to each
vertex a set of colors chosen from the set {1, 2}; that is, f : V (G) → P ({1, 2}),
of a function f is defined, if for each vertex v ∈ V (G) we have

∪
u∈N [v] f(u) =

{1, 2}. then f is called generalized 2-rainbow dominating function(G2RDF )
of G. The weight, ω(f), of a function f is defined as ω(f) =

∑
v∈V (G)|f(v)|.

Given a graph G, the minimum weight of a G2RDF is called the generalized
2-rainbow dominating number of G, which we denote by a γg2r(G).

Theorem 1 [9] Let G be a graph. Then for any k ≥ 2

min{|G|, γ(G) + k − 2} ≤ γgrk ≤ kγ(G). (1)

The attempt in [9] to characterize graphs with γ = γr2 was inspired by the
following famous problem.
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2 Generalized 2-rainbow domination function graphs

2.1 γg2r for graphs kn

Generally, for graphs kn that V (kn) = v1, . . . , vn, we labeled f(v1) = {1, 2}
and the rest of the vertices are labeled ∅, s0 γg2r = 2 and γ(G) = 1, then we
observe relationship (1) is established.

2.2 γg2r for graphs km,n

Generally, for graphs km,n, V( km,n)={u1, . . . , um, v1, . . . , vn} and ui not ad-
jacent to vj , vi not adjacent to uj and any ui are adjacent all vj , and any vi
are adjacent all uj , then if f(v1) = ∅ then for example, we label f(u1) = {1}
and f(u2) = {2} because f(u1) = {1} so, at least f should be {2} for one of v.
We assume f(u2) = {2} then should for example f(v3) = {1}, therefore, it is
sufficient that the rest of the vertex have enough ∅ then w(f) = 4. We observe
relationship (1) is established.

2.3 γg2r for graphs k1,n

γg2r for graphs k1,n or star graphs, are w(f) = 2, then establishing relationship
(1) for these graphs are easily visible.

Definition 3 A tree graph that has n vertices with k hanging vertices that
has degree k + 2 and also the beginning and end vertices of the graph have
degree k + 1 and is represented by Fk.

Theorem 2 For graphs Fk, γg2r = 2n.

Proof The Proof is readily available.

2.4 γg2r for paths

γg2r for paths are as follows:

– For pi if i = 2, 3 then γg2r = 2.
– For pi if i, n ∈ N and 3n+ 1 ≤ i ≤ 3(n+ 1) then γg2r = 2n+ 2.

2.5 γg2r for graphs Cn

Generally, γg2r for these graphs are as follows:

– For Ci if i = 2, 3 then γg2r = 2.
– For Ci if i, n ∈ N and i = 3n then γg2r = 2n.
– For Ci if i, n ∈ N and 3n+ 1 ≤ i ≤ 3(n+ 1) then γg2r = 2n+ 2.
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Definition 4 Let n ≥ 3 and k be relatively prime natural numbers k <
n. The generalized Petersen graph GP (n, k) is defined as follows. Let Cn,
C ′

n be two disjoint cycles of length n. Let the vertices of Cn be u1, . . . , un

and edges uiui+1 for i = 1, . . . , n − 1 and unu1. Let the vertices of C ′
n be

v1, . . . , vn and edges vivi+k for i = 1, . . . , n, the sum i+ k being taken modulo
n (throughout this section). The graph GP (n, k) is obtained from the union
of Cn and C ′

n by adding the edges uivi for i = 1, . . . , n. Its obvious that
GP (n, k) = GP (n, n − k). The graph GP (5, 2) or GP (5, 3) is the well-known
Petersen graph.

2.6 γg2r for graphs GP(n,2)

Theorem 3 For graphs GP (n, 2) that n ≥ 3 and n and 2 are prime to each
other ((n,2)=1), then γg2r for these graphs are as follows:

γg2r ≤

{
4[n3 ], if n ≡ 0(mod3),

4([n3 ] + 1), if n ≡ 1(mod3) and n ≡ 2(mod3).
(2)

Proof (a) If n ≡ 0(mod3), we use the following algorithm and define the func-
tion f on GP (n, 2) such that (n, 2) = 1.
Step 1: f(ui) = ∅ if i ̸≡ 0(mod3) and f(ui) = {1, 2} if i ≡ 0(mod3).
Step 2: f(v3t) = f(v3t−1) = ∅ for t = 1, 2, . . . and f(v3t+1) = {1, 2} for
t = 0, 1, 2, . . .
In the graphs GP (n, 2), in the outer circle of the graph, all the ver-
tices with a multiplier of 3 have labeled with {1, 2} then ω(f) for the
outer circle of the graph is equal to 2[n3 ] and in the inner round of the
graph, all the vertices with a multiplier of 3k+ 1 have labeled with {1, 2}
then ω(f) for the inner circle of the graph is equal to 2[n3 ]. Therefore
γg2r(G) ≤ 2[n3 ] + 2[n3 ] = 4[n3 ].

(b) If n ≡ 2(mod3), we use the following algorithm and define the function f
on GP (n, 2) such that (n, 2) = 1.
Step 1: If i ̸= n and i ̸≡ 0(mod3), then f(ui) = ∅ and f(ui) = {1, 2} if
i ≡ 0(mod3) and f(un) = {1, 2}.
Step 2: f(v3t) = ∅ = f(v3t−1) for t = 0, 1, 2, . . . and f(v3t+1) = {1, 2} for
t = 1, 2, . . . . In the graphs, GP (n, 2), in the outer circle of the graph, all
vertices with a multiplier of 3 and vertices un have the labe of {1, 2}, then
ω(f) for the outer circle of the graph is equal to 2[n3 ] + 2 and in the inner
round of the graph, all vertices with a multiplier of 3k + 1 have labeled
with {1, 2} then ω(f) for the inner circle of the graph is equal to 2[n3 ] + 2.
So,

γg2r(GP (n, 2)) ≤ 2[
n

3
] + 2 + 2[

n

3
] + 2 = 4[

n

3
] + 4.

(c) If n ≡ 1(mod3), we use the following algorithm and define the function f
on GP (n, 2) such that (n, 2) = 1.
Step 1: If i ̸= n and i ̸≡ 0(mod3) then f(ui) = ∅ and if i ≡ 0(mod3) then
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f(ui) = {1, 2}.
Step 2: f(v3t) = f(v3t−1) = ∅ for t = 1, 2, . . . and f(v3t+1) = {1, 2} =
f(vn) for t = 0, 1, 2, . . . .
So, In the graphs GP (n, 2), in the outer circle of the graph, all vertices
with a multiplier of 3 and un are labeled with {1, 2}. Therefore ω(f) for
the outer circle of the graph is equal to 2[n3 ] + 2 and in the inner round
of the graph, all vertices with a multiplier of 3k + 1 and vertices vn have
labeled with {1, 2}. So, ω(f) for the inner circle of the graph is equal
2[n3 ] + 2. Finally, γg2r(GP (n, 2)) ≤ 2[n3 ] + 2 + 2[n3 ] + 2 = 4([n3 ] + 1).

Theorem 4 For graphs GP(n,3) that, n ≥ 4 and n and 3 are prime to each
other( (n,3)=1), then γg2r for these graphs are as follows:

γg2rGP (n, 3) ≤ 4([
n

3
] + 1).

Proof We use the following partition of V(GP(n,3));
In the graphs GP(n,3), in the outer circle of the graph the vertices of u3k+1

that k = 0, 1, 2, . . . are labeled of {1, 2} and the rest of the vertices are labeled
of ∅. Then, γg2r the outer circle of the graph is equal 2[n3 ]. But in the inner
round of the graph

– the vertices of v3k+2 that k = 0, 2, 4, . . . are labeled of {1, 2} then γg2r
this vertices is equal (for more caution, we label a vertex more with {1, 2})
[n3 ] + 2.

– the vertices of v3k+2 that k = 1, 3, 5, . . . are labeled of {1, 2} and γg2r this
vertices is equal (for more caution, we label a vertex more with {1, 2})
[n3 ] + 2, and the rest of the vertices are labeled of ∅.

As a result, γg2r the inner round of the graph is 2[n3 ] + 4. Eventually,

γg2rGP (n, 3) ≤ 2[
n

3
] + [

n

3
] + 2 + [

n

3
] + 2 = 4([

n

3
] + 1).

Definition 5 The honeycomb network HC(1) is a hexagon. The honeycomb
network HC(2) is obtained adding six hexagon to the boundary edges of
HC(1). Inductively, honeycomb network HC(n) is obtained from HC(n− 1)
by adding a large of hexagons around the boundary of HC(n−1). The number
of vertices and edges of HC(n) are 6n2 and 9n2 − 3n respectively. The appli-
cation of Honeycomb network is very vest, it is applied in different networking
such as all-to-all broadcasting, in cellular services, in computer networking. It
is also used in chemistry to represent the structures of different compounds.
The following results are required.

Lemma 1 ([3]) The boundary of HC(n) is the cycle C6(2n−1).

Lemma 2 ([3]) For n ≥ 2 , |V (HC(n))| − |V (HC(n− 1))| = 6(2n− 1).
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2.7 G2RDF for Honeycomb network HC(n)

Theorem 5 For Honeycomb network HC(n),

γg2r(HC(n)) ≤ 4

n∑
k=2

(2k − 1).

Proof According the lemma 1, the boundary of HC(1), HC(2) and HC(n)
is C6, C18 and C6(2n−1) respectively. For to get the generalized 2-rainbow
dominating number Honeycomb network HC(n), at first we label each circle
separately to reach the nth circle, secondly with calculate the ω(f) for each
round and finally we find sum of them. It is done in following way. The vertices
of the first round (C6) of the Honeycomb network HC(n) with ∅ is labeled.
For second round, we consider an arbitrary vertex with degree 3 and call that
with w and its label is {1,2}. Then, the label of the other vertices of this round
is like label of a cycle graph (the label of first vertex is {1, 2}, the labels of
second and third vertices are ∅ and it continues in the same way until to end).
Since, the γg2r(C3n) = 2n and f : HC(2) → {1, 2}, we have

ω(f) = γg2r(HC(2)) = γg2r(C6(2(2)−1)) = γg2r(C18) = γg2r(C3×6) = 2(4k−2),

that k is the number of rounds.
Then, with the our method, for f : HC(3) → {1, 2}, we have

ω(f) = γg2r(C6(2(3)−1)) + γg2r(C6(2(2)−1))

= γg2r(C30) + γg2r(C18)

= 4

3∑
k=2

(2k − 1).

In the same way until, for f : HC(n) → {1, 2}, we have

ω(f) =

n∑
k=2

γg2r(C3(4k−2)) = 4

n∑
k=2

(2k − 1),

then,

γg2r(HC(n)) ≤ 4

n∑
k=2

(2k − 1).

3 Conclusion and future works

In this paper� Based on the concept of usability k-rainbow domination appli-
cability, we generalized it to be more evident in the field of application and at
the same time reduce costs. For this purpose, we remove one of the conditions
of k-rainbow (vertex with empty label ) and instead we did added the condi-
tion of having k neighbors for each vertex. we did this generalized k-rainbow
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domination for simple graphs and so did this generalized 2-rainbow domina-
tion for simple graphs and GP (n, 2) and GP (n, 3).
According to the above process, For future works, we can expand generalized
k-rainbow domination for GP (n, k) and present different algorithms.
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