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Abstract A group G is called n-capable if for a suitable group H we have
G ∼= H/Zn(H). In this article, we impose some conditions to an n-capable
group G and find a group H with the mentioned condition such that G ∼=
H/Zn(H).
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1 Introduction

In 1938, Baer [1] initiated a systematic investigation of the question when
a group G can be isomorphic to the group of inner automorphisms of some
group H. Also, in Philip Hall’s 1940 paper [4], it is shown the way towards the
classification of groups of prime power order. Here is what Hall himself had to
say about it:
”The question of what conditions a group G must fulfill in order that it may
be the central quotient group of another group H,

G ∼=
H

Z(H)

is an interesting one. But while it is easy to write down a number of necessary
conditions it is not so easy to be sure that they are sufficient.”
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Calling a group which is a central factor group a capable group occurred
much later and is due to M. Hall and Senior [5]. Of course there are groups that
are not capable (non-trivial cyclic groups for example), and so the condition
that a group is capable imposes certain restrictions on its structure. The notion
of capable groups is already studied by many authors (see for instance [2,
3,8]). A group G is said to be n-capable if there is a group H such that
G ∼= H/Zn(H). In the present paper, we impose some properties to n-capable
group G and we find a group H with these properties such that G ∼= H/Zn(H).

2 Main results

Let G and H be two groups. Then an n-isoclinism (n ≥ 1) between G and
H is a pair of isomorphisms (α, β) with α : G/Zn(G) −→ H/Zn(H) and
β : γn+1(G) −→ γn+1(H) such that the following diagram commutes:

G/Zn(G)× · · · ×G/Zn(G) //

αn+1

��

γn+1(G)

β

��
H/Zn(H)× · · · ×H/Zn(H) // γn+1(H)

where horizontal maps are defined by (x̄1, x̄2, . . . , x̄n+1) 7−→ [[x1, x2], . . . , xn+1]
such that x̄i = xiZn(G) and x̄i = xiZn(H) in the top and bottom horizontal
maps, respectively (see [6] for more details). If there exists such an n-isoclinism,
we say that G is n-isoclinic to H.

Lemma 1 ([6, Theorem 7.7]) Let G be a group. The following properties are
equivalent.

(a) G is n-isoclinic to a finite group.
(b) G/Zn(G) is finite.
(c) G is n-isoclinic to a finite section of itself.

Lemma 2 ([7]) Let G be a finite capable group. Then there is a finite group
H such that G ∼= H/Z(H).

The following proposition generalizes the above result which is one of the main
lemmas of [7]. The notion of n-isoclinism helped us to provide a shorter proof
than that presented in [7].

Proposition 1 Let G be an n-capable finite group. Then there is a finite group
H such that G ∼= H/Zn(H).

Proof Since G is n-capable, there exists a group K such that G ∼= K/Zn(K).
As K/Zn(K) is finite, by part (b)⇒(a) of Lemma 1, K is n-isoclinic to a finite
group H, that is K/Zn(K) ∼= H/Zn(H) and hence G ∼= H/Zn(H).

In the next results, we discuss the nilpotency and solvability conditions on H.
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Proposition 2 Let G be a nilpotent group of class m and there exists a group
K such that G ∼= K/Zn(K) (m,n ≥ 1). Then there is a nilpotent group H
such that G ∼= H/Zn(H).

Proof By hypothesis K/Zn(K) is nilpotent of class m. Thus

K

Zn(K)
= Zm(

K

Zn(K)
) =

Zm+n(K)

Zn(K)
.

Therefore Zm+n(K) = K and K is nilpotent of class at most m + n. Now, if
we put H := K, then the proof will be completed.

Proposition 3 Let G be an n-capable solvable group. Then there is a solvable
group H such that G ∼= H/Zn(H).

Proof Clearly, for an arbitrary group K and for every n ≥ 0, Zn(K) is solvable.
Now, n-capability of G implies that for a group K we have G ∼= K/Zn(K).
Since K/Zn(K) and Zn(K) are solvable, K is also solvable. Therefore we can
take H := K.

A group G is called polynilpotent if it has a subnormal series

{1} = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G,

which the quotient groups Gi+1/Gi are nilpotent, for all 1 ≤ i ≤ n.

Theorem 1 Let G be an n-capable polynilpotent group. Then there is a polynilpo-
tent group H such that G ∼= H/Zn(H).

Proof Suppose that G ∼= K/Zn(K) and consider the following subnormal series
of G ∼= K/Zn(K)

{1} = G0
∼=

K0

Zn(K)
⊆ G1

∼=
K1

Zn(K)
⊆ · · · ⊆ Gn = G ∼=

Kn

Zn(K)
.

Now, since for every group K and n ≥ 0, Zn(K) is nilpotent, it is sufficient
to show that Ki+1/Ki is nilpotent for all 1 ≤ i ≤ n. The latter assertion is
trivial as

Ki+1

Ki

∼=
Ki+1/Zn(K)

Ki/zn(K)
∼=

Gi+1

Gi
,

is nilpotent. In fact, K has the following subnormal series

{1} ⊆ Zn(K) = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K.

Therefore we can choose H := K.

Theorem 2 Let G be a finitely generated n-capable group with r generators.
Then there exists a finitely generated group H with r generators such that
G ∼= H/Zn(H).
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Proof Assume that G ∼= K/Zn(K) and

K

Zn(K)
= 〈x1Zn(K), . . . , xrZn(K)〉.

Define H = 〈x1, . . . , xr〉 ≤ K. First, we show that

Zn(H) = Zn(K) ∩H.

Let x ∈ Zn(H) and k1, . . . , kn be arbitrary elements of K. we can take ki =
xjzj for some zj ∈ Zn(K), (1 ≤ i ≤ n and 1 ≤ j ≤ r). Now, since we may
consider Zn(K) as marginal subgroup of K

[k1, k2, . . . , kn, x] = [xj1zj1 , xj2zj2 , . . . , xjnzjn , x]
= [xj1 , xj2 , . . . , xjn , x]
= 1.

Therefore x ∈ Zn(K) ∩ H and hence Zn(H) ⊆ Zn(K) ∩ H. The converse of
latter inclusion is obvious. Now, as HZn(K) = K we have

H

Zn(H)
=

H

Zn(K) ∩H
∼=

HZn(K)

Zn(K)
=

K

Zn(K)
∼= G,

and this completes the proof.

Let π is a non-empty set of primes, a π-number is a positive integer whose
prime divisors belong to π. An element of a group is called a π-element, if its
order is a π-number and finally a group is called π-group if all of its elements
are π-element.

Lemma 3 ([6, Lemma 7.8]) Let G be a finite group such that G/Zn(G) is a
π-group. Then there exists a subgroup H of G such that H is a π-group which
is n-isoclinic to G.

Theorem 3 Let G be an n-capable finite π-group. Then there is a finite π-
group H such that G ∼= H/Zn(H).

Proof Assume that G ∼= K/Zn(K). Since K/Zn(K) is finite by Proposition
1, there is a finite group M such that K

Zn(K)
∼= M

Zn(M) . As M is finite and
M/Zn(M) is π-group, then by Lemma 3, there exists a subgroup H of M such
that H is a π-group and M is n-isoclinic to H, that is M

Zn(M)
∼= H

Zn(H) , which
completes the proof.
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