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Abstract Corruption is a slowly decaying poison in Nigeria. Corruption is a
global problem that individuals in a community can be exposed to. This pa-
per developed the dynamics of corruption and the compartments were divided
into six sections: Susceptible, Exposed, Corrupt, Honest, Punished and Recov-
ered. The paper was designed to deal with the stability of corrupt individuals
and, using the homotopy perturbation technique, the model equations are
solved for simulations to performed numerically. The analysis findings demon-
strate that the corruption-free equilibrium is locally asymptotically stable if
R0 < 1, indicating that there is corruption in the population. disappears and
if R0 > 1, means that the number of corruption rises per-capital in a society.
Also from the results, the homotopy perturbation method shows accuracy and
convergence very quickly for numerical simulations despite it require pertur-
bation for convergent. The observations and suggestions are outlined to have
a corruption-free society.
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1 Introduction

The term corruption according to [12] and [23] corruption is an unlawful prac-
tice done for personal benefit in a variety of sectors, including law enforce-
ment, security services, public service and oil and the electoral system. Olu-
jobi, (2023) in [20] claims that the failure of anti-corruption organizations in
Nigeria can be attributed to a combination of factors, including inadequate
finance, a lack of political will on the part of the government to combat cor-
ruption, and a poor use of information and communication technology (ICT).
The money laundering prohibition, the Economic and Financial Crimes Com-
mission (EFCC) Act of 2004, and the Independent Corrupt Practices and
Other Related Offences Commission (ICPC) Act of 2000 Act 2011 as well as
the Tribunal and Code Act conduct of 1991 are just a few of the laws and
organizations that Nigeria has adopted to fight corruption. These laws and
institutions aim to prevent, investigate, prosecute and punish corruption and
related crimes, as well as recover stolen property and promote transparency
and accountability in public affairs. Corruption remains pervasive and persis-
tent in Nigeria despite these legal and institutional frameworks. Also, accord-
ing to Olujobi, (2023) in [20] the Nigerian Corruption Index as of September
2020 indexed 149 out of 180 countries with a score of 25 percent out of 100
percent, indicating high levels of perceived corruption in the public sector.
The report also highlighted some of the issues hindering the effectiveness of
anti-corruption efforts in Nigeria, such as political interference, lack of indepen-
dence and capacity of anti-corruption agencies, a weak judicial system, poor
enforcement of laws and sanctions, low public awareness and participation,
and inadequate protection for whistle-blowers and activists. The consequences
of corruption in Nigeria have been found to affect not only government and
the economy but also the social fabric of society, promoting inequality, under-
mining democracy and exacerbating poverty and insecurity in [20].

Corruption in Nigeria has significantly affected the provision of basic ser-
vices to citizens, especially in the areas of health and education. Corruption
often leads to miscalculation and misappropriation of public funds intended
to improve these critical areas. This leads to poor service delivery and lack of
access to necessities for citizens in [20]. However, there is still no significant
reduction in quantity; even now it is starting to reach villages with village
funds paid by the government of Nigeria. Therefore, in [19], they studied and
examined the effectiveness of anti-corruption laws in Nigeria through a com-
parative analysis of legal frameworks and practical outcomes. The findings
suggest that despite strong legal frameworks to fight corruption, operational
outcomes may have been more effective due to several factors. In [9] exam-
ine the mechanics of corruption as well as the three preventative strategies
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suggested to deal with corruption in the Nigerian system. The dynamics of
the corruption model were described. The threshold for removing corruption
is set by the basic reproduction number. Pontryagin’s maximal principle was
applied in the optimal control technique to assess the effectiveness of the rec-
ommended control measures. Similarly, Umar,et al., (2021) in [24] developed a
model with effective tools used in Indonesia to detect corruption measures. The
results of the study, shows that the tools reduced complicated corruption in a
government sectors. Also in [4], modelling and analysis of corruption dynamics
involving media coverage has been built in to address this threat. A determin-
istic mathematical model of the Zika virus was constructed by Adamu, et al.,
(2017) in [1], using two control strategies: human therapy and pesticide spray
for mosquitoes. The model’s approximate solution was obtained through the
application of the homotopy perturbation approach. [6] built a mathemati-
cal model of the dynamics of corruption and included approaches for optimal
control to measure the behaviour of individuals in a population.[9] analysed
tactics for preventing and controlling corruption dynamics. The reintegration
of those who have recovered from corrupt practices back into society is the
main emphasis of the study.

Furthermore, in [2] developed a corruption model with optimal control
strategies. The dynamics of corruption were analysed and a non-linear deter-
ministic model was suggested. In [16] developed a model that describes pre-
vention and disengagement strategies. Similarly, [17] developed a model that
mathematically describes strategies to prevent corruption and disengagement
using an epidemiological compartmental model. Furthermore, [21] developed
a model of corruption dynamics of a nonlinear system of differential equations
with four sections viz. susceptible, exposed, infected and punished. Similarly,
[5] developed and examined a compartmentalized mathematical model of the
dynamics of corruption and subdivide into five. A model of corruption in Nige-
ria was developed and examined by [7]. Also, A mathematical model of corrup-
tion that takes into account the awareness raised by anti-corruption and jail
counselling was proposed by [13]. A novel mathematical model for the dynam-
ics of moral corruption with age-appropriate sexual information and guidance
and counselling was developed by Mokaya et al., (2021) in [14]. Nwajeri et
al., (2023) developed a mathematical model of corruption dynamics that in-
cludes a fractal-fractional derivative in [18]. The model was intended to study
whether corruption exists among adults in government, adults in civil services
and public authority, youth in primary schools, youth in tertiary institutions,
and individuals who have given up engaging in corrupt practices.

This paper therefore aims to extend the existing model in [2] by incorpo-
rating the fair group method, the group penalty method and the homotopy
perturbation method for semi-analytic solutions.
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2 Material and Methods

The homotopy perturbation approach is used to solve the model equations,
which are broken down into six (6) compartments for analysis. The model
diagram can be deduced in Fig. 1. The model equations are given by the
corresponding diagram in Fig. 1 as

dS(t)
dt = Λ− ρβSC + (1− θ) εR− (µ+ κ)S,

dE(t)
dt = ρβSC − (µ+ δ)E,

dC(t)
dt = αδE − (µ+ τ + σ)C,

dP (t)
dt = σC − (µ+ π)P,

dH(t)
dt = κS + θεR− µH,

dR(t)
dt = (1− α) δE + τC + πP − (µ+ θε)R,

(1)

with the initial conditions as
S(0) = S0 > 0, E(0) = E0 ≥ 0, C(0) = C0 ≥ 0,

P (0) = P0 ≥ 0, H(0) = H0 ≥ 0, R(0) = R0 ≥ 0.

Fig. 1 Corruption diagram of the model
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Table 1 Description of Variables and Parameters

Symbol Description
S Susceptible humans
E Exposed Individuals
C Corruption
P Punished
H Honest
R Recovered
Λ Recruitment rate of population
ρ The transmission rate per contact
β Contact of individuals rate per contact
δ The rate at which those who are exposed get corrupted
σ The rate at which corrupted individuals moved to punish group
ϵ The rate at which individuals who have recovered become honest
τ Rate at which corrupted individuals become punished
π The rate of punished individuals
κ proportion rate of individuals that join the honest population
µ Natural mortality rate for all individuals
α The rate of individuals who leave the exposed group and enter the

corrupted subpopulation
θ The proportion rate of individuals who leave the recovered group and

enter the honest subgroup

2.1 The Model Formation

The population N(t) is subdivided into six groups. Those who are susceptible
to corruption S(t), those who exposed to a corrupt are E(t), those involved in
corrupt practitioners, are corrupt individuals C(t) , those who have stopped
engaging in corrupt practices are healed individuals R(t) , those caught in
corrupt practices are punished individuals P (t) and those who abstain from
corruption and refuse to engage in the act are honest individuals H(t) at time
t ≥ 0.
The Assumptions: The assumptions of the model are given by recruitment
rate Λ to a receptive class, like immigration or birth.This also assume that
κ joins the honest subpopulation that never partakes in corruption activities.
Taking into account natural death rate µ is for all individuals throughout the
entire study period. With a chance of ρ every interaction, susceptible people
will come into touch with corrupted individuals at level β and transition to the
exposed class. Among them, α moved at a pace of δ to the damaged partition,
whereas the remaining individuals moved to the restored partitions. Corrupted
individuals learn about the prison corruption effect and move to the restored
subpopulation in proportion σ. Of these cured individuals, θ moved at ε to the
sensitive compartment and the other part joined the honesty compartment.
These individuals, τ , moved to the punished class, and finally π individuals
moved to the restored class.
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2.2 Positive Invariant Region

The rate of change of the total population of corruption given as follows:

dN

dt
=

dS

dt
+

dE

dt
+

dC

dt
+

dP

dt
+

dH

dt
+

dR

dt
, (2)

dN

dt
= Λ− µN. (3)

Theorem 1 The region η = (S,E,C, P,H,R) ∈ ℜ6
+ is positively invariant

and attracts all solutions of the system equations.

Proof Let Assume there is no corruption induced death in the population
equation, which gives

dN

dt
≤ Λ− µN, (4)

dN

dt
+ µN ≤ Λ. (5)

Multiplying (5) with its integrating factor, gives

dN

dt
expµt+ µNeµt ≤ Λ expµt, (6)

d

dt

[
Neµt

]
≤ Λ expµt. (7)

Integrating equation (7), gives

N expµt ≤ Λ expµt

µ
+A. (8)

Divide (8) by expµt gives

N (t) ≤ Λ

µ
+A exp−µt. (9)

Thus, t = 0

N (0)− Λ

µ
≤ N (t) ≤ Λ

µ
+

(
N (0)− Λ

µ

)
exp−µt. (10)

Taking the limit as t → ∞,
N ≤ Λ

µ
. (11)

As t → ∞, the inequalities (11) shows that the total population of (N) ap-
proaches to Λ

µ , where Λ
µ are upper bounds. This means that at any time t,

all solutions with initial conditions in η remain in η. Hence, the solutions of
the model at each time t enter the feasible region η. Therefore, the solution
of system (1) is positively invariant in the region η, which is mathematically
well located.
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2.3 Positivity of Solutions for the Model

This paper focuses on corruption populations and it is necessary to show all
the states variables are positive at time t.

Theorem 2 Let the initial conditions be S > 0, E > 0, C > 0, P > 0, H >
0, and R > 0. The solution of (S,E,C, P,H,R) of the model system (1-6) is
positive forall t > 0.

Proof Suppose there is no corruption induced death in the population equa-
tion, which gives; S+E+C+P +H +R = N . For all t > 0,S ≤ N, E ≤ N ,
C ≤ N , P ≤ N , H ≤ N , and R ≤ N . From the system of equations (1) gives

dS (t)

dt
= Λ− ρβSC + (1− θ) εR− (µ+ κ)S ≥ − (µ+ κ)S. (12)

Thus, by reduction the (12) gives

dS (t)

dt
≥ − (µ+ κ)S, (13)∫

dS (t)

S
≥
∫

− (µ+ κ) dt, (14)

ln S ≥ − (µ+ κ) t+ c, (15)
S ≥ exp{− (µ+ κ) t+ c}, (16)
S ≥ κ exp{− (µ+ κ) t}. (17)

Therefore, S (t) ≥ S (0) exp{− (µ+ κ) t} ≥ 0, which applied to all equations
in model system (1) and obtained;

E (t) ≥ E (0) exp− (µ+ δ) t ≥ 0,

C (t) ≥ C (0) exp− (µ+ τ + σ) t ≥ 0,

P (t) ≥ P (0) exp− (µ+ π) t ≥ 0,

H (t) ≥ H (0) exp−µt ≥ 0,

R (t) ≥ R (0) exp− (µ+ ε) t ≥ 0.

(18)

Thus, this shows that the solutions of the model are exist and unique, which
means the corruption can be control in a population. This complete the proved.

2.4 The Basic Reproduction Number R0

Is characterized as a novel infectious potential spread by an individual within
a group. in [8]. The basic reproductive number R0 is defined as the average
number of secondary cases produced by a corrupt individual in an otherwise
susceptible host population in [22]. The basic reproduction number R0 can
also mean the number of individuals corrupted during their entire corrup-
tion period in a population that is completely susceptible in [25]. The ba-
sic reproduction number R0 has no unit. When R0 < 1, the corruption dies
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out in the population. Otherwise, when R0 > 1 , the corruption persist.The
fundamental reproduction number in this model is obtained using the next
generation matrix method R0, as stated in [25]. The incidence rate of new
corruption in partition i is represented by fi (x) , and the basic reproduction
number (R0) = ρ

(
FV −1

)
. V +

i the rate of movement of individuals into com-
partment i by all other means, and V −

i the rate of movement of individuals
out of compartment i . In model equation(1), the infected compartments in-
clude E(t), C(t), P (t) and the expected secondary corruption depends on these
classes. The rate of occurrence of new corruption in compartment i is given
by the matrix.

F =

ρβSC
0
σC

 . (19)

At the corruption-free equilibrium point, the jacobian matrix of F is evaluated
as follows:

F =

(
∂fi
(
E0
)

∂xj

)
,

where xj = E,C, P forall j = 1, 2, 3 and E0 is the corruption-free equilib-
rium. At the corruption-free equilibrium point, the Jacobian matrix of (19) is
evaluated yield

F =

 0 ρβΛκ
(µ+κ)µ 0

0 0 0
0 σ 0

 , V −1 =


1

(δ+µ) 0 0
−αδ

(τ+σ+µ)
1

(τ+σ+µ) 0

0 0 1
(π+µ)

 . (20)

The next generated matrix FV −1 is given as

FV −1 =

 0 ρβΛκ
(µ+κ)µ 0

0 0 0
0 σ 0




1
(δ+µ) 0 0
−αδ

(τ+σ+µ)
1

(τ+σ+µ) 0

0 0 1
(π+µ)

 . (21)

Therefore, multiply 21 gives ρβΛκ
(µ+κ)µ(δ+µ)

ρβΛκ
(µ+κ)µ 0

0 0 0
0 σ

(τ+σ+µ) 0

 . (22)

Then ρ
(
FV −1

)
is the dominant eigenvalue of the

(
FV −1

)
matrix. Obtained

A =

 ρβΛκ
(µ+κ)µ(δ+µ)

ρβΛk
(µ+κ)µ 0

0 0 0
0 σ

(τ+σ+µ) 0

 ,
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and

|A− λI| =

 ρβk
(µ+κ)µ(δ+µ)

ρβΛκ
(µ+κ)µ 0

0 0 0
0 σ

(τ+σ+µ) 0

−

λ1 0 0
0 λ2 0
0 0 λ3

 ,

where I is the identity matrix and λ is the arbitrary sing within the diagonal
of the identity matrix; which obtained as ρβΛκ

(µ+κ)µ(δ+µ) − λ1
ρβΛκ

(µ+κ)µ 0

0 −λ2 0
0 σ

(τ+σ+µ) −λ3

 = 0.

The determinant is the eigenvalue and the root of the characteristic polynomial
is the basic reproduction number, which is given as

R0 =
ρβΛκ

(µ+ κ)µ (δ + µ)
. (23)

2.5 Corruption-Free Equilibrium Point (CFEP)

Let E0 = (S,E,C, P.H,R) = (S0, E0, C0, P0.H0, R0) as given in (1). Therefore,
the corruption free equilibrium state (CFEP) given as

E0 =

(
Λk

(µ+ κ)µ
, 0, 0, 0, 0,

Λ

(µ+ κ)

)
. (24)

2.6 Local Stability of Corruption-Free Equilibrium Point (LSCFEP)

Using the CFEP, the Jacobian matrix of system (1) is analysed in order to
examine the local stability at the corruption-free equilibrium point. Next, the
sign of the Jacobian matrix’s eigenvalues is used to calculate the stability.

Theorem 3 The local stability of corruption-free equilibrium is said to be
locally asymptotically stable, if all the eigenvalues of the Jacobian matrix are
negative.

Proof Supposing the Jacobian matrix of the model equations is given as

J =


−ρβC − (µ+ κ) 0 −ρβS 0 0 (1− θ)ε

ρβC −(µ+ δ) ρβS 0 0 0
0 αδ −(τ + µ+ δ) 0 0 0
0 0 σ −(µ+ π) 0 0
κ 0 0 0 −µ θε
0 (1− α)δ τ π 0 −(θε+ µ)

 .
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At the corruption-free equilibrium point, evaluating system equation (1) yields

J (E0) =



−(µ+ κ) 0 − ρβΛk
(µ+κ)µ 0 0 (1− θ)ε

0 −(µ+ δ) ρβΛk
(µ+κ)µ 0 0 0

0 αδ −(τ + µ+ δ) 0 0 0
0 0 σ −(µ+ π) 0 0
κ 0 0 0 −µ θε
0 (1− α)δ τ π 0 −(θε+ µ)


.

The characteristic polynomial derived by solving the Jacobian matrix of the
system (1) at corruption-free equilibrium obtained

((µ+ λ)(µ+ θε+ λ)(µ+ k + λ)(µ+ π + λ))[λ2 +m1λ+m2] = 0. (25)

where
m1 = 2k + τ + δ + σ,

m2 = −αδρβΛκ+(µ+κ)µ(µ+δ)(σ+µ)
(µ+κ)µ ,

and λ is the coefficient values from the lift hand side in (25), which gives

λ1 = −µ < 0,
λ2 = −(µ+ π) < 0,
λ3 = −(µ+ k) < 0,
λ4 = −(µ+ θε) < 0.

From the last expression in (25), the right hand side is resolved to quadratic
equation, which is given as

λ2 +m1λ+m2 = 0. (26)

This result shows that the corruption-free equilibrium is locally asymptotically
stable if and only if R0 < 1 , or otherwise unstable when R0 > 1 . According
to the Routh-Hurwitz criteria in [15], the criterion was applied to (1) and has
a strictly negative real root when m1 > 0,m2 > 0. From this it can be clearly
deduced that m1 > 0, which is positive and moreover given as

m2 =
−αδρβΛk + (µ+ k)µ(µ+ δ)(σ + µ)

(µ+ k)µ

= (µ+ δ)(σ + µ)(1−R0) > 0.

(27)

The Ruth-Hurwitz criterion states that all roots of a polynomial of determi-
nants must have negative real parts iff

b1 > 0, b2 > 0, b3 > 0, b4 > 0, b5 > 0, b6 > 0,

b1b2b3 > b23 + b21b4, (b1b4 − b5)(b1b2b3 − b23 + b21b4) > b5(b1b2 − b3)
2 + b1b

2
5.

Subsequently, for endemic of corruption if R0 > 1, E∗ is locally asymptotically
stable if satisfied the above assertion and endemic equilibrium exists.
Finally, the corruption free-equilibrium point is therefore locally asymptoti-
cally stable iff R0 < 1. Hence, the proved.
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2.7 Global Stability of Corruption Free Equilibrium

Theorem 4 The stability of corruption free-equilibrium point E0 of the system
(1) is globally asymptotically stable iff R0 < 1.

Proof following the Lyapunov function, Supposing

L = a1E + a2C. (28)

Differentiate (28) and substituting the values of E and C in (28) gives

dL

dt
= a1 [ρβSC − (δ + µ)E] + a2 [αδE − (σ + µ+ τ)C]

= a1ρβSC − a2(σ + µ+ τ)C − a1(δ + µ)E + a2αδE.
(29)

Thus, let a1 =
(

αδ
δ+µ

)
a2 and also substituting the value of a1in (29) obtained

dL
dt = αδ

δ+µa2ρβSC − a2(σ + µ+ τ)C,

≤ αδρβΛκ
(δ+µ)(µ+κ)µ − (σ + µ+ τ)a2C.

(30)

Putting a1 = 1 and substituting R0, and obtained

dL

dt
≤ (σ + µ+ τ)(R0 − 1)C. (31)

Therefore, dL
dt ≤ 0 for C ≤ 0 this show that R0 < 1 and dL

dt = 0 iff C = 0. This
implies that dL

dt ≤ 0 which is E0. According to LaSalle’s invariance principle
E0 is globally asymptotically stable in η.

2.8 Analytical solution using Homotopy Perturbation Method (HPM)

Ji-Haun (2000) originally put forward the fundamentals of the Homotopy per-
turbation approach in [10]. Many linear and non-linear equations can be solved
analytically approximatively with the Homotopy perturbation method. In [11],
A series expansion method for solving non-linear partial differential equations
is the homotopy perturbation method. The following non-linear differential
equation was considered in [11] to demonstrate the fundamental concepts of
this methodology.
The following equations are provided as follows

A3 (U)− f (r) = 0, r ∈ Ω. (32)

Subject to the boundary condition

B3

(
U,

∂U

∂n

)
= 0, r ∈ Γ, (33)

where A3 is a general differential operator, B3 a boundary operator, f (r) is
a known analytical function and Γ is the boundary of the domain Ω. The
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operator A3 can be divided into two parts L and N , where L is the linear
part, and N is the non-linear part. The Homotopy perturbation structure is
shown as follows

H (V, h) = (1− h) [L (V )− L (U0)] + h [A (V )− f (r)] = 0, (34)

where V (r, P ) : Ω ∈ [0, 1] → R. P ∈ [0, 1] is the parameter for embedding,
and U0 is an approximation that meets the boundary requirement. It is likely
that a power series in h can be used to express (34) as

V = V0 + hV1 + h2V2 + · · · (35)

The following gives

U = lim
h→1

v = v0 + hv1 + h2v2 + · · · (36)

In most circumstances, the series (36) is convergent. Nonetheless, the non-
linear operator determines the convergent rate.

2.9 Solution of the Model Equations

The system equations (1) have the following differential equations
dS
dt + ρβSC + (µ+ κ)S − (1− θ) εR− Λ,

dE
dt + (µ+ δ)E − ρβSC,

dC
dt + (µ+ τ + σ)C − αδ,

dP
dt + (µ+ π)P − σ,

dH
dt + µH − κS − θε,

dR
dt + (µ+ ε)R− (1− α) δE − τC − π.



= 0 (37)

with the following initial conditions

S(0) = S0, E(0) = E0, C(0) = C0,

P (0) = P0, H(0) = H0, R(0) = R0.

Let

S = a0 + ha1 + h2a2 + · · · (38)
E = b0 + hb1 + h2b2 + · · · (39)
C = c0 + hc1 + h2c2 + · · · (40)
P = e0 + he1 + h2e2 + · · · (41)
H = f0 + hf1 + h2f2 + · · · (42)
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R = w0 + hw1 + h2w2 + · · · (43)

Apply the application of Homotopy perturbation method (HPM) on (37) start-
ing from the first model equations, which follows as

(1− h)
dS

dt
+ h

[
dS

dt
+ ρβSC + (µ+ κ)S − (1− θ) εR− Λ

]
= 0, (44)

(1− h)
(
a

′

0 + ha
′

1 + h2a
′

2 + · · ·
)
+ h

[
(a

′

0 + ha
′

1 + h2a
′

2 + · · · )

+ ρβ(a0 + ha1 + h2a2 + · · · )(c0 + hc1 + h2c2 + · · · )
+ (µ+ κ)

(
a0 + ha1 + h2a2 + · · ·

)
− (1− θ) ε

(
w0 + hw1 + h2w2 + · · ·

)
− Λ

]
= 0,

(1− h)
(
a

′

0 + ha
′

1 + h2a
′

2 + · · ·
)
+ h

[(
a

′

0 + ha
′

1 + h2a
′

2 + · · ·
)

+ ρβ
(
a0 + ha1 + h2a2 + · · ·

) (
c0 + hc1 + h2c2 + · · ·

)
+ (µ+ κ)

(
a0 + ha1 + h2a2 + · · ·

)
− (1− θ) ε

(
w0 + hw1 + h2w2 + · · ·

)
− Λ

]
= 0. (45)

Substitute equation (38), (39), and (40) into equation (44)(
a

′

0 + ha
′

1 + h2a
′

2 + · · ·
)
+ h

[
ρβ
(
a0 + ha1 + h2a2 + · · ·

) (
c0 + hc1 + h2c2 + · · ·

)
+ (µ+ κ)

(
a0 + ha1 + h2a2 + · · ·

)
− (1− θ) ε

(
w0 + hw1 + h2w2 + · · ·

)
− Λ

]
= 0. (46)

Coefficients of the powers of h are expanded and obtained

h0 : a
′

0 = 0, (47)
h1 : a

′

1 + ρβa0c0 + (µ+ κ) a0 − (1− θ) εw0 − Λ = 0, (48)
h2 : a

′

2 + ρβ (a1c0 + a0c1) + (µ+ κ) a1 − (1− θ) εw1. (49)

Subsequently, it follows on each model equations in (37) gives

(1− h)
dE

dt
+ h

[
dE

dt
+ (µ+ δ)E − ρβSC

]
= 0. (50)

Substitute (38), (39), and (40) into (49)

(1− h)
(
b
′

0 + hb
′

1 + h2b
′

2 + · · ·
)
+ h

[(
b
′

0 + hb
′

1 + h2b
′

2 + · · ·
)
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+ (µ+ δ)
(
b0 + hb1 + h2b2 + · · ·

)
− ρβ

(
a0 + ha1 + h2a2 + · · ·

) (
c0 + hc1 + h2c2 + · · ·

)]
= 0. (51)

(
b
′

0 + hb
′

1 + h2b
′

2 + · · ·
)
+ h

[
(µ+ δ)

(
b0 + hb1 + h2b2 + · · ·

)
− ρβ

(
a0 + ha1 + h2a2 + · · ·

) (
c0 + hc1 + h2c2 + · · ·

)]
= 0. (52)

Coefficients of the powers of h are expanded, which gives

h0 : b
′

0 = 0, (53)
h1 : b

′

1 + (µ+ δ) b0 − ρβa0c0 = 0, (54)
h2 : b

′

2 + (µ+ δ) b1 − ρβ (a0c1 + a1c0) = 0. (55)

Also, apply HPM on the other model equations in (37) gives

(1− h)
dC

dt
+ h

[
dC

dt
+ (µ+ τ + σ)C − αδE

]
= 0. (56)

Substitute (39) and (40) into (55)

(1− h)
(
c
′

0 + hc
′

1 + h2c
′

2 + · · ·
)
+ h

[(
c
′

0 + hc
′

1 + h2c
′

2 + · · ·
)

+ (µ+ τ + σ)
(
c0 + hc1 + h2c2 + · · ·

)
− αδ

(
b0 + hb1 + h2b2 + · · ·

)]
= 0,

(57)(
c
′

0 + hc
′

1 + h2c
′

2 + · · ·
)
+ h

[
(µ+ τ + σ)

(
c0 + hc1 + h2c2 + · · ·

)
− αδ

(
b0 + hb1 + h2b2 + · · ·

)]
= 0, (58)

(1− h)
(
b
′

0 + hb
′

1 + h2b
′

2 + · · ·
)
+ h

[(
b
′

0 + hb
′

1 + h2b
′

2 + · · ·
)

+ (µ+ δ)
(
b0 + hb1 + h2b2 + · · ·

)
− ρβ

(
a0 + ha1 + h2a2 + · · ·

) (
c0 + hc1 + h2c2 + · · ·

)]
= 0, (59)

(
b
′

0 + hb
′

1 + h2b
′

2 + · · ·
)
+ h

[
(µ+ δ)

(
b0 + hb1 + h2b2 + · · ·

)
− ρβ

(
a0 + ha1 + h2a2 + · · ·

) (
c0 + hc1 + h2c2 + · · ·

)]
= 0. (60)
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Coefficients of the powers of h are expanded, which gives

h0 : b
′

0 = 0, (61)
h1 : b

′

1 + (µ+ δ) b0 − ρβa0c0 = 0, (62)
h2 : b

′

2 + (µ+ δ) b1 − ρβ (a0c1 + a1c0) = 0. (63)

Then applying HPM to (37)

(1− h)
dC

dt
+ h

[
dC

dt
+ (µ+ τ + σ)C − αδE

]
= 0. (64)

Substitute (38) and (39) into (63)

(1− h)
(
c
′

0 + hc
′

1 + h2c
′

2 + · · ·
)
+ h

[(
c
′

0 + hc
′

1 + h2c
′

2 + · · ·
)

+ (µ+ τ + σ)
(
c0 + hc1 + h2c2 + · · ·

)
− αδ

(
b0 + hb1 + h2b2 + · · ·

)]
= 0,

(65)(
c
′

0 + hc
′

1 + h2c
′

2 + · · ·
)
+ h
[
(µ+ τ + σ)

(
c0 + hc1 + h2c2 + · · ·

)
− αδ

(
b0 + hb1 + h2b2 + · · ·

)]
= 0. (66)

Coefficients of the powers of h are expanded, which gives

h0 : c
′

0 = 0, (67)
h1 : c

′

1 + (µ+ τ + σ) c0 − αδb0 = 0, (68)
h2 : c

′

2 + (µ+ τ + σ) c1 − αδb1 = 0. (69)

Applying HPM to (37) also gives

(1− h)
dP

dt
+ h

[
dP

dt
+ (µ+ π)P − σC

]
= 0. (70)

Substitute (40) and (41) into (69)

(1− h)
(
e
′

0 + he
′

1 + h2e
′

2 + · · ·
)
+ h

[(
e
′

0 + he
′

1 + h2e
′

2 + · · ·
)

+ (µ+ π)
(
e
′

0 + he
′

1 + h2e
′

2 + · · ·
)
− σ

(
c
′

0 + hc
′

1 + h2c
′

2 + · · ·
)]

= 0, (71)

(
e
′

0 + he
′

1 + h2e
′

2 + · · ·
)
+ h

[
(µ+ π)

(
e
′

0 + he
′

1 + h2e
′

2 + · · ·
)

− σ
(
c
′

0 + hc
′

1 + h2c
′

2 + · · ·
)]

= 0. (72)
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Coefficients of the powers of h are expanded, which gives

h0 : e
′

0 = 0, (73)
h1 : e

′

1 + (µ+ π) e0 − σc0 = 0, (74)
h2 : e

′

2 + (µ+ π) e1 − σc1 = 0. (75)

Apply HPM 0n equation (37) again and obtained

(1− h)
dH

dt
+ h

[
dH

dt
+ µH − κS − θεR

]
= 0. (76)

Substitute (40) and (41) into (75)

(1− h)
(
f

′

0 + hf
′

1 + h2f
′

2 + · · ·
)
+ h

[(
f

′

0 + hf
′

1 + h2f
′

2 + · · ·
)

+ µ
(
f0 + hf1 + h2f2 + · · ·

)
− κ

(
a0 + ha1 + h2a2 + · · ·

)
− θε

(
w0 + hw1 + h2w2 + · · ·

)]
= 0, (77)

(
f

′

0 + hf
′

1 + h2f
′

2 + · · ·
)
+ h

[
µ
(
f0 + hf1 + h2f2 + · · ·

)
− κ

(
a0 + ha1 + h2a2 + · · ·

)
− θε

(
w0 + hw1 + h2w2 + · · ·

)]
= 0. (78)

Coefficients of the powers of h are expanded, which gives

h0 : f
′

0 = 0, (79)
h1 : f

′

1 + µf
0
− κb0 − θεw0 = 0, (80)

h2 : f
′

2 + µf
1
− κb1 − θεw1 = 0. (81)

Thus, applying HPM on the last system equations in (37) and obtained

(1− h)
dR

dt
+ h

[
dR

dt
+ (µ+ ε)R− (1− α) δE − τC − πP

]
= 0. (82)

Substitute (42) and (43) into (81)

(1− h)
(
w

′

0 + hw
′

1 + h2w
′

2 + · · ·
)
+ h

[(
w

′

0 + hw
′

1 + h2w
′

2 + · · ·
)

+ (µ+ ε)
(
w0 + hw1 + h2w2 + · · ·

)
− (1− α)

(
b0 + hb1 + h2b2 + · · ·

)
− τ

(
c0 + hc1 + h2c2 + · · ·

)
− π

(
e0 + he1 + h2e2 + · · ·

)]
= 0, (83)



Deterministic Model of Corruption Dynamics in Nigeria VIA HPM 59

(
w

′

0 + hw
′

1 + h2w
′

2 + · · ·
)
+ h

[
(µ+ ε)

(
w0 + hw1 + h2w2 + · · ·

)
− (1− α)

(
b0 + hb1 + h2b2 + · · ·

)
− τ

(
c0 + hc1 + h2c2 + · · ·

)
− π

(
e0 + he1 + h2e2 + · · ·

)]
= 0, (84)

Coefficients of the powers of h are expanded, which gives

h0 : w
′

0 = 0, (85)
h1 : w

′

1 + (µ+ ε)w0 − (1− α) b0 − τc0 − πe0 = 0, (86)
h2 : w

′

2 + (µ+ ε)w1 − (1− α) b1 − τc1 − πe1 = 0. (87)

Substitute (42) and (43) into (85)

a
′

1=Λ+ (1− θ) εR0 − ρβS0C0 − (µ+ κ)S0. (88)

Applying the initial condition and integrating both sides of the equation a1(0)
obtained

a1=(Λ+ (1− θ) εR0 − ρβS0C0 − (µ+ κ)S0) t. (89)

Thus

a
′

2 =


(1− θ) ε ((1− α)E0 + τC0 + πP0 − (µ+ ε)R0) t
−ρβ ((Λ+ (1− θ) εR0 − ρβS0C0 − (µ+ κ)S0)) tC0

+S0(αδE0 − (µ+ τ + σ)C0)t
− (µ+ κ) (Λ+ (1− θ) εR0 − ρβS0C0 − (µ+ κ)S0) t



=


(1− θ) ε ((1− α)E0 + τC0 + πP0 − (µ+ ε)R0)
−ρβ ((Λ+ (1− θ) εR0 − ρβS0C0 − (µ+ κ)S0)C0)
+S0(αδE0 − (µ+ τ + σ)C0)
− (µ+ κ) (Λ+ (1− θ) εR0 − ρβS0C0 − (µ+ κ)S0)

 t. (90)

Subsequently, substitute (38) and (39) into (44) obtained

S (t) = a0 + ha1 + h2a2 + · · · (91)
S (t) = lim

h→1

(
a0 + ha1 + h2a2 + · · ·

)
(92)

S (t) = a0 + a1 + a2 + · · · (93)

S(t) = S0 + (Λ+ (1− θ) εR0 − ρβS0C0 − (µ+ κ)S0) t

+


(1− θ) ε ((1− α)E0 + τC0 + πP0 − (µ+ ε)R0)
−ρβ ((Λ+ (1− θ) εR0 − ρβS0C0 − (µ+ κ)S0)C0)
+S0 (αδE0 − (µ+ τ + σ)C0)
− (µ+ κ) (Λ+ (1− θ) εR0 − ρβS0C0 − (µ+ κ)S0)

 t2

2 . (94)
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Subsequently, by applying the same method to E(t), C(t), P (t), H(t), and
R(t), where h convergent or approaching 1 following the above steps and the
results for simulations obtained as

E(t) = E0 + (ρβS0C0 − (µ+ δ)E0) t

+

[
ρβ (S0 (αδE0 − (µ+ τ + σ)C0) + (Λ+ (1− θ) εR0 − ρβS0C0))
− (µ+ κ)S0C0 − (µ+ δ) (ρβS0C0 − (µ+ δ)E0)

]
t2

2 .

(95)

C(t) = C0 + (αδE0 − (µ+ τ + σ)C0) t

+ [αδ (ρβS0C0 − (µ+ δ)E0)− (µ+ τ + σ) (αδE0 − (µ+ τ + σ)C0)]
t2

2 ,

(96)

P (t) = P0 + (σC0 − (µ+ π)P0) t

+ [σ (αδE0 − (µ+ τ + σ)C0)− (µ+ π) (σC0 − (µ+ π)P0)]
t2

2 , (97)

R(t) = R
0
+ ((1− α)E0 + τC0 + πP0 − (µ+ ε)R0) t

+

 (1− α) (ρβS0C0 − (µ+ δ)E0) + τ (αδE0 − (µ+ τ + σ)C0)
+π (σC0 − (µ+ π)P0)
− (µ+ ε) ((1− α)E0 + τC0 + πP0 − (µ+ ε)R0)

 t2

2 ,

(98)

H(t) = H
0
+ (θεR0 + κE0 − µH

0
) t

+

[
κ (ρβS0C0 − (µ+ δ)E0)−µ (θεR0 + κE0 − µH0)
+θε ((1− α)E0 + τC0 + πP0 − (µ+ ε)R0)

]
t2

2 . (99)

2.10 Numerical Simulations

In this section, the results of semi-analytical method called HPM were used,
and the simulations was carry out with the help of Maple software for analysis.

Table 2 Variables, Values and Sources

Variable Value Source
S(t) 200,000 Assumed
E(t) 60,000 Assumed
C 50,000 Assumed
P 2330 Assumed
R 500 Assumed
H 250 Assumed
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Table 3 Parameters, Value and Sources

Parameter Value Source
Λ 85 [2]
ρ 0.036 Assumed
β 0.0234 Assumed
δ 0.2 [2]
σ 0.007 [2]
ε 0.35 [2]
τ 0.4 Assumed
π 0.006 Assumed
κ 0.03 [13]
µ 0.0160 [13]
α 0.3 [13]
θ 0.1 [13]

Fig. 2 Graph of corruption showing the solutions of HPM with different rates δ in time.

Fig. 3 Graph of exposed individuals that join corruption with different rates α in time.

3 Results and Discussion

This section examines the results of numerical simulations in this paper. In
Figure 2, the Corruption graph shows the HPM solutions with different rates
δ in time. The graph shows how HPM converges successfully and laps on each
other. Also, figure 3 shows the graph of exposed individuals that join Corrup-
tion with different rates α in time. The corrupted individuals are exposed to
media and public society, which decreases the rate of corrupted individuals in
a population by 30 per cent in 5 years. Subsequently, figure 4 shows the graph
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Fig. 4 Graph of punished individuals that join recovered class due to control measure with
different rates π in time.

Fig. 5 Graph of susceptible individuals that join honest with different rates κ in time.

Fig. 6 Graph of recovered individuals with different rates α from exposed class in time.

of punished individuals that join the recovered classes due to control measures
with different rates π in time. The graph shows that the more individuals be-
come penalized due to crime or corruption practices, the higher the number of
recovered individuals increases and, at the same time, decreases in Corruption.
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Figure 5 is a graph of susceptible individuals that join honestly with different
rates κ in time. The increase in honest individuals from the graph shows that
information and communication technology effectively checks officials hold-
ing public and civil organizations’ offices, decreasing corruption. Figure 6, the
graph of recovered individuals with different rates α from exposed class in
time, shows the increment in recovered individuals from corrupt sub popula-
tions due to using information and communication technology in every section.
Finally, the result shows that when individuals are exposed and punished for
the crime committed due to corruption, it drastically decreases corruption. In-
formation and communication technology, media campaigns/awareness, and
jail terms for corrupted individuals reduce the practices in society. In future
studies, an optimal control strategy will be incorporated.

4 Conclusion

The criminalization of corrupt practices for personal benefit encompasses the
public sector, courts, security agencies, the oil and gas sector, and electoral
processes. The Homotopy perturbation approach for semi-analytical solutions
and the investigation of corruption stability are the main topics of this paper.
A deterministic model of Corruption of six (6) compartmentalization was de-
veloped and analysed. In summary, the findings demonstrate the accuracy of
the Homotopy perturbation approach in handling non-linear terms for semi-
analytical results, and they also offer simulations to aid in result interpretation.
The level of Corruption was described in the study.
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