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Abstract Many interesting structures are arising from the Tower of Hanoi
puzzle. Some of them increase the number of pegs and some of the others
relax the Divine Rule. But all of them accept discs of different diameters. In
this paper, we increased the number of available pegs and changed the Divine
Rule by considering similar discs, that is, all discs have the same size diameter.
From this point of view, the Tower of Hanoi puzzle becomes the distributing
of n identical discs (objects) into k distinct labeled pegs (boxes). We modify
Lucas’s legend to justify these variations. Each distribution of n discs on k
pegs is a regular state. In a Diophantine Graph, every possible regular state is
represented by a vertex. Two vertices are adjacent in a Diophantine Graph if
their corresponding states differ by one move. The Diophantine Graphs have
shown to possess attractive structures. Since it can be embedded as a subgraph
of a Hamming Graph, the Diophantine Graph may find applications in fault-
tolerant computing.
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Tower of Hanoi
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1 Introduction

Towers of Hanoi problem was introduced in 1883 by the French number theorist
Edouard Lucas (1842-1891). The traditional puzzle consists of three vertical
pegs and n discs, each of mutually different diameters. The puzzle starts with
all discs on the first peg arranged in such a way that no larger disc lies on
a smaller one (divine rule). A state obeying this divine rule is called regular
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state [1,6]. The goal of the puzzle is to transfer all discs to the third peg under
the following stipulations:

1. Only one disc may be moved at a time;
2. Only the top disc on each peg can be moved;
3. The Divine Rule - A larger disc can never be placed on top of a smaller

one.

As shown in the 2013 text by Heinz et al. [8], there are many variations on
the Tower of Hanoi puzzle. One variation involves increasing the number of
available pegs as in the Reve’s puzzle [3]. Many variations relax the Divine
Rule. These variations include the Bottleneck Tower of Hanoi [2], the Santa
Claus Tower, and the Sinners’ Tower [4,5]. In this paper, we consider two
changes in the Tower of Hanoi puzzle, by increasing the number of vertical
pegs and changing the Divine Rule by considering all discs had the same size.

With these changes, the Tower of Hanoi problem, changed to the Distri-
bution Problem, i.e. distributing n identical objects into k distinct labeled
boxes (pegs). On the other hand, the Distribution Problem consists of k pegs
numbered 1, 2, . . . , k, and n identical discs. A (legal) n−configuration or reg-
ular state is a distribution of n discs among the pegs by stacking them on the
pegs. A (legal) move changes one n−configuration into another by moving one
topmost disc on one peg to the top of another peg. In the original setting, all
discs lie on the peg numbered ’1’ (this is a perfect state of the Problem) Fig.
1, and the task is to transfer them to the last peg numbered ’k’.

Fig. 1: Initial state, all n discs lie on the peg numbered ’1’.

In this paper, we will show each regular state by a nondecreasing n−bit string
a1a2 . . . an, where 1 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ k. Here, we present a new inter-
connection structure, called the Diophantine Graph, which is inspired by the
famous Diophantine Linear equations. One of the famous problems in elemen-
tary combinatorics is counting the number of ways of distributing n identical
objects into k distinct labeled boxes. There are many interesting solutions in
the literature.

One of these genius ways is representing each distribution by a binary string
of length n+k−1. Suppose all boxes (pegs) are arranged side by side in a line
by increasing labels. That is, they are arranged from left to right, numbered 1
through k. If we use a ’0’ to denote an object and a ’1’ to denote a separator
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vertical stroke between two adjacent boxes, then every way of distributing n
identical objects in k distinct boxes, can be represented by a unique binary
string of length n + k − 1 with n 0’s and (k − 1) 1’s. This correspondence is
indeed a bijection between the family of all distribution of n identical objects
into k distinct boxes and the family of all such binary strings.

For example, in Fig. 2, the distribution of n = 11 objects into k = 4 boxes
is represented by the binary string 00001001100000.

Fig. 2: A distribution and it’s corresponds binary string 00001001100000

But, we can represent this binary string by a 4−ary string ’11112244444’ of
length n = 11, in which we write the label of each box instead of its objects,
that is, we labeled by ’i’ for each object in the box of the label ’i’. It is easy to
see that, there is a bijection between the family of all binary strings of length
n+k−1 with n 0’s and (k−1)1’s and the family of all increasing n−bit string
a1a2 . . . an, where 1 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ k.

Definition 1 Let n, k ≥ 1 are given positive integers. Let α = a1a2 . . . an, be
a string of length n over the set {1, 2, . . . , k}, then we say that the α is an
increasing n−string over the set {1, 2, . . . , k}, if 1 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ k.

Now, turn our attention to consider the following important and typical prob-
lem in combinatorics namely, finding the number of integer solutions to the
linear equation:

x1 + x2 + · · ·+ xk = n, (1)

in k unknowns x1, x2, . . . , xk, where n ≥ 1 and k ≥ 1 are nonnegative integers.
An integer solution to the equation (1) is a k−tuple (e1, e2, . . . , ek) of integers
satisfying (1) when xi substituted by ei, for each i = 1, 2, . . . , k. Now, every
nonnegative integer solution (e1, e2, . . . , ek) to (1) corresponds to a way of
distributing n identical objects to k distinct boxes as shown below:

e1︷ ︸︸ ︷
o · · · o︸ ︷︷ ︸

peg1

+

e2︷ ︸︸ ︷
o · · · o︸ ︷︷ ︸

peg2

+ · · ·+
ek︷ ︸︸ ︷

o · · · o︸ ︷︷ ︸
pegk

= n.

Clearly, different solutions to 1 correspond to different ways of distributing. On
the other hand, every such way of distribution corresponds to a nonnegative
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integer solution to (1). Since the correspondence is a one-to-one correspon-
dence, thus, the number of increasing k−ary n−string is equal to the number
of nonnegative solutions of the equation (1), is

(
n+ k − 1
k − 1

)
.

From now on, we called each increasing k−ary n−string α = a1a2 . . . an as a
Diophantine code of the kind (n, k) or simply (n, k)−Diophantine code.

2 Diophantine Graph

A convenient and direct representation of the Distribution Problem is graph
representation. In a Distribution Problem, every possible state of the Problem
is represented by a vertex. Two vertices are adjacent in the Diophantine Graph
if their corresponding states differ by one move. In this section, we define the
Diophantine graph and investigate some basic parameter of it. But, before this
we need the following definitions. Recall that the Hamming distance between
two binary strings α and β is the number H(α, β) of bits, where α and β differ
[9]. Now, we generalize this concept to Diophantine codes.

Definition 2 Let n, k ≥ 1 be positive integers. The Diophantine graph Dn
k of

kind (n, k) is the graph (V n
k , En

k ), where

V n
k = {a1a2 . . . an : 1 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ k},

that is the set of all Diophantine codes of the kind (n, k) and (α, β) ∈ En
k if

and only if H(α, β) = 1.

Example 1 Let k=1 and n=3, then, D3
1 is a graph with only one vertex A = 111

(Fig. 3(a)). For each n ≥ 1 one can show that, Dn
1 ≃ K1.

Example 2 Let k = 2 and n = 3, then,

V 3
2 = {111, 112, 122, 222},

and (3, 2)−Diophantine Graph D3
2 is isomorphic to P4 (Fig. 3(b)).

For each n ≥ 1, one can simply show that, Dn
2 ≃ Pn+1.

Fig. 3: Diophantine Graphs
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Now, we want to draw the Diophantine graph corresponding to the non-
negative integer solutions of the equation x1 + x2 + x3 = 1. We want to show
each solution of the equation by 1-string over the set {1, 2, 3}.The solutions
of this equation are x1 = 1, x2 = x3 = 0, which corresponds to the 1-string
a1 = 1; or the solution x2 = 1, x1 = x3 = 0 where it corresponds to the 1-
string a1 = 2; and the last solution x3 = 1, x1 = x2 = 0, which correspond to
the 1-string a1 = 3 (Fig. 3(c)).
Therefore, we have three distinct sequences of length 1, each pair is different
in one component and their corresponding vertices in the Diophantine graph
are adjacent. Hence, D1

3 ≃ K3. In general, we have the following lemma:

Lemma 1 For each positive integer k ≥ 1, we have D1
k ≃ Kk.

Proof It is easy to prove by distributing of ’1’ object into k boxes. Then, there
are n different (1, k)−Diophantine codes, in which, all pairs have one different
component.

3 Some preliminary properties of D-Graphs

Our next task is to count |V n
k |. It is a simple problem in introductory com-

binatorics (cf. [10]) to see that, each distribution of n identical objects in k
labeled distinct boxes corresponds to a solution of the Diophantine equation
x1 + x2 + · · · + xk = n, and hence, corresponding to an increasing n−string
over the set {1, 2, . . . , k}. So, we have the following lemma.

Lemma 2 |V n
k | =

(
n+ k − 1
k − 1

)
.

Now, we find some structural properties of the Diophantine graphs. Since each
vertex of the Diophantine graph corresponds to a solution of the Diophantine
linear equation x1 + x2 + · · ·+ xk = n.

Proposition 1 Let n ≥ 1 and k ≥ 1 be positive integers. Let α = a1a2 . . . an
is an arbitrary vertex of the Diophantine graph Dn

k , then

degDn
k
(α) = (an − a1) + (k − 1).

Proof If k = 1, then for each positive integer n ≥ 1 there is only one way
to distribute n identical objects into one box. That is, in 1’st move, and 2nd
move, . . ., and n’th move, in each time only one object lies in the only box.
Thus, a1 = a2 = · · · = an = 1. Hence, the only one (n, 1)−Diophantine code is

α =

n︷ ︸︸ ︷
11 . . . 1. Thus, degDn

1
(α) = (1−1)+(1−1) = 0. Now, suppose that, k ≥ 2,

and α = a1a2 . . . an, β = b1b2 . . . bn are vertices of (n, k)−Diophantine graph
Dn

k , we know α and β are adjacent if they are different in only one component.
Thus, (α, β) ∈ En

k iff
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• a1 ̸= b1 and for each i ̸= 1, ai = bi and 1 ≤ b1 ≤ a2, there is a2 − 1 choice
for b1
or

• a2 ≠ b2 and for each i ̸= 2, ai = bi and a1 ≤ b2 ≤ a3, there is a3 − a1 choice
for b2
or
...
or

• an−1 ̸= bn−1 and for each i ̸= n − 1, ai = bi and an−2 ≤ bn ≤ an, there is
an − an−2 choice for bn−1

or

• an ̸= bn and for each i ̸= n, ai = bi and an−1 ≤ bn ≤ k, there is k − an−1

choice for bn.

Hence, by the Addition Principle, the desired number of adjacent vertices in
the neighborhood of the vertex α is (an − a1) + k − 1.

Immediately, from the above theorem the minimum and maximum degrees
in the (n, k)−Diophantine graphs Dn

k are k − 1 and 2k − 2, respectively. By
Theorem 1, each of the vertices where an = a1, has minimum degree δ = k−1
and those vertices whose labels include an = k and a1 = 1 have maximum
degree ∆ = 2k − 2. Each vertex in (n, k)−Diophantine graph Dn

k labeled
by a constant Diophantine code is called a corner vertex. Our main result is
computed the size of the (n, k)−Diophantine graphs Dn

k , but first, we find the
number of vertices, those Diophantine codes which are started with a given
integers a1 and terminated by an an.

Lemma 3 Let, 1 ≤ a1 ≤ an ≤ k are given. Then, the number of vertices
whose (n, k)−Diophantine Codes are started by a1 and terminated by an, is(

n− 2 + (an − a1 + 1)− 1
(an − a1 + 1)− 1

)
=

(
n− 2 + (an − a1)

an − a1

)
.

Proof Our main task is to find Diophantine Codes of kind (n, k), whose first
and the last components are a1 and an, respectively.
Since, 1 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ k, and for each 1 ≤ i ≤ k, we have
a1 ≤ ai ≤ an, thus, the number of selections of ai is an − a1 + 1. On the
other hand, for given a1 and an, the number of distributing of n objects into
an − a1 + 1 boxes where, the first and the last boxes have at least one object
analogous to distribution of n − 2 identical objects into, an − a1 + 1 distinct
labeled boxes and is(

n− 2 + (an − a1 + 1)− 1
(an − a1 + 1)− 1

)
=

(
n− 2 + (an − a1)

an − a1

)
.
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In Theorem 1, we show that the degree of each vertex α = a1a2 . . . an of (n, k)-
Diophantine graphs, depends only on a1 and an, by this fact and the hand
shaking theorem [11], we can find the number of edges of the (n, k)−Diophantine
graphs Dn

k .

Proposition 2 Let |En
k | be the number of edges of the Diophantine graph

Dn
k = (V n

k , En
k ), then

|En
k | = qnk =



(
k
2

)
, if n = 1,

(k−1)k(k+1)
3 , if n = 2,

1
2

∑k−1
i=1

∑k−i
j=1

(
n+j−2

j

)
j + 1

2

(
n+k−1
k−1

)
(k − 1), if n ≥ 3.

Proof If n = 1, then for each k ≥ 1, by lemma 1, D1
k ≃ Kk. Thus q1k =

(
k
2

)
.

Now, let n = 2. Thus, we need all (2, k)−Diophantine Code ab, where we
sorted them by lexicographic order in the following array:

12 13 14 . . . 1(k − 1) 1k
23 24 . . . 2(k − 1) 2k

. . . ...
...

(k − 2)(k − 1) (k − 2)k
(k − 1)k

(2)

This is a (k − 1) × (k − 1) array, we divided it along the main diagonal into
k − 1 disjoint subsets as follows:

Li = {ab | 1 ≤ a ≤ b ≤ k, b− a = i},

where i = 1, 2, . . . , k−1. It is easy to check that each subset Li, i = 1, 2, . . . , k−
1, has k − i elements. Thus,

2q2k =
∑

1≤a≤b≤k

deg(ab)

=
∑

1≤a≤b≤k

[(b− a) + (k − 1)] (Theorem 1)

=
∑

1≤a≤b≤k

(b− a) +
∑

1≤a≤b≤k

(k − 1)

=

k−1∑
j=0

(k − j)j +

(
2 + k − 1

k − 1

)
(k − 1) set b− a = j

=

k−1∑
j=1

kj −
k−1∑

j=1

j2 +

(
k + 1

k − 1

)
(k − 1)

= k(
(k − 1)k

2
)− (k − 1)k(2k + 1)

6
+

(k − 1)k(k + 1)

2
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=
k(k − 1)

2

6k − 2k + 1 + 3

3
= 2

(k − 1)k(k + 1)

3
.

Thus,
q2k =

(k − 1)k(k + 1)

3
.

Let n ≥ 3 and k ≥ 3. Since the degree of each vertex of Dn
k is dependent

only on a1 and an, it suffices to partition the vertex set V n
k by (2, k)− Dio-

phantine Codes a1an, and hence, find the other components of the sequences
a2, a3, . . . , an−1. In other words, we want to find all Diophantine Codes of kind
(n, k), aa2a3 . . . an−1b for given a and b where 1 ≤ a ≤ b ≤ k.Therefore, for
each component ab in array (2), we must compute the number of non-negative
integer solutions of the following linear equation:

xa + xa+1 + · · ·+ xb = n− 2,

which equals to(
n− 2 + ((b− a) + 1)− 1

((b− a) + 1)− 1

)
=

(
n− 2 + (b− a)

b− a

)
.

Let b− a = j. Since, 1 ≤ a < b ≤ k then, j = 1, 2, . . . , k − 1. Thus,

2qnk =
∑
v∈V n

k

deg(v)

=
∑

1≤a<b≤k

deg(aa2 . . . an−1b)

=

k−1∑
i=1

k−i∑
j=1

(
n− 2 + j

j

)
j +

∑
v∈V n

k

(k − 1).

Hence,

2qnk =
k−1∑
i=1

k−i∑
j=1

(
n+j−2

j

)
j +

(
n+k−1
k−1

)
(k − 1). (3)

In Proposition 2, by a little computing, one can reduce the double sigma into
one sigma. Finally, we obtain a closed formula for the number of edges of this
graph.

Proposition 3 For each n ≥ 3 and k ≥ 1 we have,

2qnk =
k−1∑
j=1

(k − j)j
(
n+j−2

j

)
+
(
n+k−1
k−1

)
(k − 1). (4)

For this purpose, it is sufficient to show the following lemma.

Lemma 4 For any positive integers k ≥ 2 and n ≥ 1 we have,
k−1∑
i=1

k−i∑
j=1

j

(
n+ j − 2

j

)
=

k−1∑
j=1

(k − j)j

(
n+ j − 2

j

)
. (5)
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Proof We will to show that both sides of the equality have the same recurrence
relation with the same initial value. For this purpose, we set the left and right-
hand-sides of (5) by f(k) and g(k), respectively. That is,

f(k) =

k−1∑
i=1

k−i∑
j=1

j

(
n+ j − 2

j

)
,

g(k) =

k−1∑
j=1

(k − j)j

(
n+ j − 2

j

)
.

It is easy to show that, f(1) = g(1) = 0, and f(2) = g(2) =
(
n−1
1

)
and so on.

But, for k ≥ 2 we have,

f(k) =

k−1∑
j=1

j

(
n+ j − 2

j

)
+

k−1∑
i=2

k−i∑
j=1

j

(
n+ j − 2

j

)
.

If we set i− 1 = t then,

f(k) =
k−1∑
j=1

j

(
n+ j − 2

j

)
+

k−2∑
t=1

(k−(1+t))∑
j=1

j

(
n+ j − 2

j

)
That is,

f(k) = f(k − 1) +

k−1∑
j=1

j

(
n+ j − 2

j

)
.

On the other hand,

g(k + 1) =

k∑
j=1

((k − j) + 1)j

(
n+ j − 2

j

)

=

k∑
j=1

(k − j)j

(
n+ j − 2

j

)
+

k∑
j=1

j

(
n+ j − 2

j

)
.

So,

g(k + 1) = g(k) +

k∑
j=1

j

(
n+ j − 2

j

)
.

Thus,
f(k + 1)− f(k) = g(k + 1)− g(k).

Hence, for each n, k ≥ 1, we have,

f(k) = g(k).

Now, we write a closed formula for the sigma on the right side of equation (4).
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Lemma 5 For each n ≥ 3 and k ≥ 3 we have,

k−1∑
j=1

(k − j)j
(
n+j−2

j

)
= (k − 1)(n− 1)

(
n+k−2
k−2

)
− n(n− 1)

(
n+k−2
k−3

)
. (6)

Proof We consider the ordinary generating function

f(x) =
1

(1− x)
n−1 =

∞∑
j=0

(
n+ j − 2

j

)
xj .

Now, by the derivative of the function f(x), we have

f
′
(x) =

n− 1

(1− x)
n =

∞∑
j=1

j

(
n+ j − 2

j

)
xj−1.

Now, define a new generating function g(x) as

g(x) = xf
′
(x) =

(n− 1)x

(1− x)
n =

∞∑
j=1

j

(
n+ j − 2

j

)
xj .

So,

g
′
(x) =

n− 1

(1− x)
n +

n(n− 1)x

(1− x)
n+1 ,

and so,

xg
′
(x) =

(n− 1)x

(1− x)
n +

n(n− 1)x2

(1− x)
n+1 =

∞∑
j=1

j2
(
n+ j − 2

j

)
xj+1.

Let,

h(x) = kg(x)− xg
′
(x) =

∞∑
j=1

(kj − j2)

(
n+ j − 2

j

)
xj+1

=
k(n− 1)x

(1− x)
n − (n− 1)x

(1− x)
n − n(n− 1)x2

(1− x)
n+1 .

Suppose, F (x) = h(x)
1−x . Thus we have,

F (x) =
h(x)

1− x

=
k(n− 1)x

(1− x)
n+1 − (n− 1)x

(1− x)
n+1 − n(n− 1)x2

(1− x)
n+2

=

∞∑
j=1

(kj − j2)

(
n+ j − 2

j

)
xj

∞∑
i=0

xj
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=

∞∑
t=1

(

t∑
j=1

(kj − j2)

(
n+ j − 2

j

)
)xt

= (k − 1)(n− 1)x+

∞∑
j=0

{
k(n− 1)

(
n+ j + 1

j + 1

)
− (n− 1)

(
n+ j + 1

j + 1

)

− n(n− 1)

(
n+ j + 1

j

)}
xj+2.

Thus,

k−1∑
j=1

(k− j)j

(
n+ j − 2

j

)
= (k− 1)(n− 1)

(
n+ k − 2

k − 2

)
−n(n− 1)

(
n+ k − 2

k − 3

)
.

Therefore, we can rewrite Proposition 3 as follows.

Proposition 4 For each n ≥ 3 and k ≥ 3 we have,

2qnk =

k−1∑
i=1

k−i∑
j=1

(
n+ j − 2

j

)
j +

(
n+ k − 1

k − 1

)
(k − 1)

=

k−1∑
j=1

(k − j)j

(
n+ j − 2

j

)
+

(
n+ k − 1

k − 1

)
(k − 1).

So,

2qnk = (k−1)(n−1)

(
n+ k − 2

k − 2

)
−n(n−1)

(
n+ k − 2

k − 3

)
+

(
n+ k − 1

k − 1

)
(k−1).

Example 3 In Fig. (4a), for n = 2 and k = 5, We can easily find out with a
few simple calculations

2q25 =

5−1∑
i=1

5−i∑
j=1

(
5 + j − 2

j

)
j +

(
2 + 5− 1

5− 1

)
(5− 1)

= (2− 1)(5− 1)

(
2 + 5− 2

5− 2

)
− 2(2− 1)

(
5 + 2− 2

5− 3

)
+

(
5 + 2− 1

5− 1

)
(5− 1)

= 4

(
5

3

)
−
(
5

2

)
+

(
6

4

)
4

= 80.

Hence, q25 = 40.

Example 4 In graph Fig.(4b), with a few calculations one can find that

|E4
4 | = q44 = 84.
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4 Coloring of the D-Graph Dn
k

In this section, we use this labeling, which is key to coloring the vertices. It
is customary to number the boxes 0, 1, . . . , k − 1. Thus, far we have looked
at known properties of the Diophantine graphs. we are now ready to proved
a new result. The Diophantine graphs are complicated, but thanks to their
symmetry and our convenient labeling, they can easily be colored.

For a positive integer c, a graph can be c-colored if there is a way to
label the vertices with the colors 0, 1, . . . , c− 1 such that adjacent vertices are
different colors. The chromatic number of a graph G is the smallest number
of colors needed and is denoted χ(G). For example, χ(D1

k) = χ(Kk) = k.
As, induced subgraph < {11 . . . 1an|1 ≤ an ≤ k} > is isomorphic to Kk thus,
χ(Dn

k ) ≥ k. To see that k colors suffice, color the vertex labeled a1a2 . . . an by
the sum of its box numbers modulo k. That is,

f(a1a2 . . . an) = a1 + a2 + · · ·+ an mod(k).

To check that f is a k-coloring, observe that two vertices of Dn
k are adjacent

if and only if they differ in exactly one place. Hence, we have the following
theorem.

Proposition 5 Let k ≥ 2 and n ≥ 1, then χ(Dn
k ) = k.

5 Connectivity

In this section, we want to show that for each (n, k)− Diophanteen graph Dn
k

are connected graphs where n, k ≥ 1 are positive integers.

Proposition 6 Let n, k ≥ 1 be positive integer. Thus, the Diophantine graph
Dn

k is connected.

Proof It is sufficient to show that there is a path between any two vertices of
the Diophantine graph Dn

k . Let A = a1a2 . . . an and B = b1b2 . . . bn are two
vertices of Dn

k . Define n−string C = A−B = c1c2 . . . cn and call it difference
vector, where ci = ai − bi for each i = 1, 2, . . . , n. There are some coordinates
ci’s are positive, negative, or equal to zero, for each i = 1, 2, . . . , n.
Suppose for each i ∈ {i1, i2, . . . , it}, the coordinate ci < 0, where

1 ≤ it < it−1 < . . . < i1 ≤ n,

and for each j ∈ {j1, j2, . . . , js}, cj > 0 where 1 ≤ j1 < j2 < . . . < js ≤ n
and for other indices i, ci’s are equal to 0. Let A0 = A. Suppose i1 be the
index of the rightmost bit of C, such that ci1 < 0, then, in A0 we converse
ai1 into bi1 and rest the remaining coordinates. Call the new sequence by A1.
Since i1 is the greatest index such that ai1 < bi1 thus, bi1+1 ≤ ai1+1. So
ai1−1 ≤ ai1 < bi1 ≤ bi1+1 ≤ ai1+1. Hence, A1 = a1 . . . ai1−1bi1ai1+1 . . . an is
an admissible string. Since A0 and A1 differ by exactly one coordinate, then,
they are adjacent vertices of the Diophantine graph Dn

k . So, in the same way
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as above, one can show that for each l, 1 ≤ l ≤ t we can find the vertex Al from
Al−1, by conversing the coordinate ail into bil . Hence, Ail−1 and Ail are differ
on exactly one digit, thus, they are adjacent in Dn

k . So, we have a sequence
of consecutive adjacent vertices. Hence, P1 = A0A1 . . . At is a path from A0

through At. Now, set B0 = At. If we compute the difference vector C = B0−B
then, all its coordinates are non negative, that is; cj ≥ 0 for each j = 1, 2, . . . , n.
For each j ∈ {j1, j2, . . . , js} where 1 ≤ j1 < j2 < . . . < js ≤ n, the coordinates
cj of difference vector are positive and all remaining coordinates of the vector
are zero. Let j1 be the least indices of n−string B0 such that cj1 is positive.
Replace the j1’th coordinate B0 by j1’th coordinate bj1 . Hence, we obtain the
n−string B1 = a1 . . . aj1−1bj1aj1+1 . . . an. Since, j1 is the least indices of B0 in
which aj1 > bj1 . Thus, bj1−1 ≥ aj1−1. Hence,

aj1−1 ≤ bj1−1 ≤ bj1 < aj1 ≤ aj1+1.

So, the n−string B1 is an admissible string. Since the vertices B0 and B1 differ
on exactly one position then, they are adjacent in the Diophantine graph Dn

k .
So, in the same way as above, one can show that for each l, 1 ≤ l ≤ s one can
find the vertex Bl from the vertex Bl−1, by replacing the coordinate ajl by bjl .
So, we obtain the consecutive adjacent vertices B0, B1, . . . , Bs and hence, the
path A0A1 . . . AtB1 . . . Bs from A through B. Thus, the graph Dn

k is connected.

Since the minimum degree of vertices, Dn
k is k − 1. Then, κ(Dn

k ) ≤ k − 1.
On the other hand the Diophantine graph Dn

k is a subdivision graph of the
complete graph Kk. So, κ(Dn

k ) ≥ k−1. Hence, we have the following theorem.

Proposition 7 For each n, k ≥ 1 connectivity of the Diophantine graph Dn
k

is (k − 1). That is, κ(Dn
k ) = k − 1.

Example 5 Suppose in Fig. 4b, A and B are 2222 and 1234, respectively. Then,
the diference vector C is A − B = +0 − −. So, by the above algorithm we
have the consecutive adjacent vertices A0 = 2222, A1 = 2224, A2 = 2234
and B1 = 1234. Therefore, P = A0A1A2B1 is a (shortest) path between the
vertices A and B.

6 Distance properties of a D-Graphs

One of the most basic parameters of a graph G is the notion of distance. The
distance between two vertices in a graph is a simple but surprisingly useful
notion. It has led to the definition of several graph parameters such as the
diameter, the radius, the average distance, and the metric dimension. In this
section, we find the radius and diameter of the Diophantine graphs.

Definition 3 Let G be a connected graph. The distance dG(u, v) between two
vertices u, v of a graph G is defined as the length of the shortest path between
u and v in G.
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Informally and naturally, the distance between u and v equals the least possible
number of edges traversed from u to v. Specially dG(u, u) = 0.
Definition 4 Let G be a graph. We define, concerning G, the following no-
tions:
– The eccentricity of a vertex ecc(v) is the largest distance from v to another

vertex;
ecc(v) = max

x∈V (G)
dG(v, x).

– The diameter diam(G) of G is the largest eccentricity over its vertices, and
the radius rad(G) of G is the smallest eccentricity over its vertices.

– The vertex u is a central vertex if ecc(u) = rad(G). The center of G, Z(G)
is defined as

Z(G) = {u ∈ V (G) | ecc(u) = rad(G)}.
As can be seen, the definition of a Diophantine graph is analogous to that of
the Boolean cube. In the following, we show that the shortest path between two
vertices of the Diophantine graph Dn

k is the Hamming distance between them.
The Hamming distance between two strings of equal length is the number of
positions at which the corresponding symbols are different. In another way, it
measures the minimum number of substitutions required to change one string
into the other. On the other hand, let A = a1a2 . . . an and B = b1b2 . . . bn are
two arbitrary vertices of the Diophantine graph Dn

k . The Hamming distance
between A and B is defined as the following function,

H(A,B) =
∣∣∣{i : ai ̸= bi, where A = a1a2 . . . an and B = b1b2 . . . bn}

∣∣∣.
For example, H(11223345, 11123455) = 3. Since, the (n, k)−Diophantine graph
Dn

k , contains all increasing n−string over the alphabet {1, 2, . . . , k}, then, two
vertices A and B are adjacent if and only if H(A,B) = 1. One can simply
show that dDn

k
(A,B) = H(A,B), where dDn

k
(A,B) is the shortest path be-

tween A and B. Indeed, by the proof of the theorem 6, there is a path of length
H(A,B) between two vretices A and B. So, H(A,B) ≥ dDn

k
(A,B). Now, sup-

pose P = A0A1 . . . Am is a shortest path between A = A0 and B = Am. Two
consecutive vertices of the path are adjacent iff H(A,B) = 1. So, A and B are
different at most in dDn

k
(A,B) positions. Hence, H(A,B) = dDn

k
.

Now, we want to compute the eccentricity of each vertex of the Diophan-
tine graph. Suppose A = a1a2 . . . an be a given vertex of the graph Dn

k , set
Mi(A) = {j|aj = i} where, 1 ≤ j ≤ n and i = 1, 2, . . . , k.

Lemma 6 Let A and B be two arbitrary vertices of the graph Dn
k . Thus, there

is a corner vertex i such that, d(A, i) ≥ d(A,B).

Proof Set m = min{|Mi(A)∩Mi(B)| : i = 1, 2, . . . , k}, thus, there is a j where
1 ≤ j ≤ k such that, m = |Mj(A) ∩ Mj(B)|. By the definition of Hamming
distance, we have

d(A,B) = n−
k∑

i=1

|Mi(A) ∩Mi(B)| ≤ n−m = d(A, j).
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Thus, for calculating the eccentricity of vertexA, it is sufficient to only calculate
its distance from the Corner vertices. So,

ecc(A) = max{d(A, i) : i = 1, 2, . . . , k}.

Since, the corner vertices 1 = 11 . . . 1 and k = kk . . . k are different on n
coordinates, then, diam(Dn

k ) = n. Thus we have the following lemma.

Lemma 7 For each positive integer n ≥ 1and k ≥ 1, the diameter of the
Diophantine graph Dn

k is n.

By Lemma 6, for calculating the eccentricity of a vertex A, it is sufficient to
only calculate its distance from the Corner vertices. Indeed, for each vertex
A ∈ Dn

k , we have

ecc(A) = max{d(A,X) : X ∈ V (Dn
k )}

= max{d(A, i) : i ∈ {1, 2, . . . , k}}
= max{n− ni : i = 1, 2, . . . , k},

where ni = |Mi(A)|. Let A be a vertex of the graph Dn
k , then, by Lemma

6 there is a corner vertex i, such that ecc(A) = n − ni. If ni < ⌊n
k ⌋, then

n− ni > n− ⌊n
k ⌋. But, the eccentricity of the vertex

B =

n1︷ ︸︸ ︷
1 . . . 1

n2︷ ︸︸ ︷
2 . . . 2 . . .

nk︷ ︸︸ ︷
k . . . k,

is n− ⌊n
k ⌋ where, ni ≥ ⌊n

k ⌋ for i = 1, 2, . . . , n. Hence, the vertex A can not be
a central vertex. Thus, we have the following lemma.

Lemma 8 rad(Dn
k ) = n− ⌊n

k ⌋.

Now, by Lemma 6 and Lemma 8, one can construct many graphs with given
radius.

Proposition 8 Let n ≥ 1 and k ≥ 1 be positive integers then, the center
Z(Dn

k ) is an induced subgraph of the Diophantine graph Dn
k of order

(
r+k−1
k−1

)
where r = n− k⌊n

k ⌋.

Corollary 1 Let n ≥ 1 and k ≥ 1 be positive integers. then,

a) If n < k then Z(Dn
k )

∼= Dn
k that is, the Diophantine graph is self-center.

b) If k|n then, the Diophantine graph Dn
k is a mono center that is Z(Dn

k )
∼= K1

with center

V (Z(Dn
k )) = {

m︷ ︸︸ ︷
1 . . . 1

m︷ ︸︸ ︷
2 . . . 2 . . .

m︷ ︸︸ ︷
k . . . k},

where m = n
k .

Example 6 The following figures show some D-graphs with various centers and
radii.
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(a) Self center graph Z(D2
5) = D2

5
with radius rad(D2

5) = 2
(b) The center and radius of the D-graph D4

4 .

Fig. 4: The radius and center of some D-graphs
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