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Abstract Let E and F be two Riesz spaces. An operator T : E → F between
two Riesz spaces is said to be unbounded order-to-order continuous whenever
xα

uo−→ 0 in E implies Txα
o−→ 0 in F for each net (xα) ⊆ E. This paper aims

to investigate several properties of a novel class of operators and their connec-
tions to established operator classifications. Furthermore, we introduce a new
class of operators, which we refer to as order-to-unbounded order continuous
operators. An operator T : E → F between two Riesz spaces is said to be
order-to-unbounded order continuous (for short, ouo-continuous), if xα

o−→ 0

in E implies Txα
uo−→ 0 in F for each net (xα) ⊆ E. In this manuscript, we

investigate the lattice properties of a certain class of objects and demonstrate
that, under certain conditions, order continuity is equivalent to unbounded
order-to-order continuity of operators on Riesz spaces. Additionally, we estab-
lish that the set of all unbounded order-to-order continuous linear functionals
on a Riesz space E forms a band of E∼.
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1 Introduction

The notion of unbounded order convergence, also known as uo-convergence,
was initially introduced in [5] and further developed in [11]. In recent years,
this concept has received significant attention and has been the subject of in-
vestigation in several papers, including [4,6,7]. An area of particular interest
is the study of geometric properties of Banach lattices using uo-convergence.
Wickstead provided a characterization of spaces in which weak convergence of
nets is equivalent to uo-convergence, see [13]. It was followed in [6], Gao char-
acterized the space E such that in its dual space E∗, uo-convergence implies
w∗-convergence and vice versa. He also characterized the spaces in whose dual
space simultaneous uo- and w∗-convergence imply weak/norm convergence.
Bahramnezhad and Haghnejad Azar have introduced unbounded order con-
tinuous operators on Riesz spaces and investigated on the lattices properties
of this classification of operators, see [3]. Also in another article, Hanghne-
jad Azar, Jalili, and Moghimi introduced a new classification of operators
as order-to-norm topology continuous operators and order-to-weak topology
continuous operators in [9]. They investigated the properties of these oper-
ators, and left as an open problem whether every order-to-norm continuous
operator from a Riesz space to a normed Riesz space has a modulus. This
manuscript introduces a new classification of operators, namely strongly order
continuous operators, and investigates their lattice properties. Specifically, we
demonstrate that if an order bounded linear functional f on a Riesz space E
is strongly order continuous, then its modulus exists and is also strongly order
continuous.

Recall that a net (xα)α∈A in a Riesz space E is order convergent (or, o-
convergent for short) to x ∈ E, denoted by xα

o−→ x whenever there exists
another net (yβ)β∈B in E such that yβ ↓ 0 and for every β ∈ B, there exists
α0 ∈ A such that |xα − x| ≤ yβ for all α ≥ α0. A net (xα) in a Riesz space
E is unbounded order convergent (or, uo-convergent for short) to x ∈ E if
|xα − x| ∧ u

o−→ 0 for all u ∈ E+. We denote this convergence by xα
uo−→

x and write that (xα) uo-convergent to x. This is an analogue of pointwise
convergence in function spaces. Let RA be the Riesz space of all real-valued
functions on a non-empty set A, equipped with the pointwise order. It is easily
seen that a net (xα) in RA uo-converges to x ∈ RA if and only if it converges
pointwise to x. For instance in c0 and ℓp(1 ≤ p ≤ ∞), uo-convergence of
nets is the same as coordinate-wise convergence. Assume that (Ω,Σ, µ) is a
measure space and let E = Lp(µ) for some 1 ≤ p < ∞. Then uo-convergence
of sequences in Lp(µ) is the same as almost everywhere convergence. Note
that the uo-convergence in a Riesz space E does not necessarily correspond
to a topology on E. For example, let E = c, the Banach lattice of real valued
convergent sequences. Put xn = Σn

k=1ek, where (en) is the standard basis.
Then (xn) is uo-convergent to x = (1, 1, 1, ...), but it is not norm convergent.

We show that the collection of all order bounded strongly order continuous
linear functionals on a Riesz space E is a band of E∼ where E∼ is order
dual of E [Theorem 2.7]. For unexplained terminology and facts on Banach
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lattices and positive operators, we refer the reader to [1,2]. Let us start with
the definition. Recall that an operator T : E → F between two Riesz spaces
is said to be order continuous (resp. σ-order continuous) if xα

o−→ 0 (resp.
xn

o−→ 0) in E implies Txα
o−→ 0 (resp. Txn

o−→ 0) in F . The collection of all
order continuous operators of Lb(E,F ) (the vector space of all order bounded
operators from E to F ) will be denoted by Ln(E,F ), that is

Ln(E,F ) := {T ∈ Lb(E,F ) : T is order continuous}.

Similarly, Lc(E,F ) will denote the collection of all order bounded operators
from E to F that are σ-order continuous. That is,

Lc(E,F ) := {T ∈ Lb(E,F ) : T is σ-order continuous}.

Let E, F be two Riesz spaces. Recall from [3], an operator T : E → F be-
tween two Riesz spaces is said to be uo-continuous, if xα

uo−→ 0 in E implies
T (xα)

uo−→ 0 in F . The collection of all uo-continuous operators will be de-
noted by Luo(E,F ). Recall that from [8], a continuous operator T : E → F
between two normed Riesz spaces is said to be σ-uon-continuous, if for each
norm bounded uo-null sequence (xn) ⊆ E implies T (xn)

∥.∥−−→ 0 in F . When
T : E → F is an order bounded, its order adjoint T ′ : F∼ → E∼ satisfies

T ′(f(x)) = f(T (x)),

for all f ∈ F∼ and x ∈ E. A Riesz space is said to be laterally complete
(resp. σ-laterally complete) whenever every subset of pairwise disjoint positive
vectors (if every disjoint sequence) has a supremum. For a set A, RA is an
example of σ-laterally complete Riesz space. A positive non-zero vector a in a
Riesz space E is an atom if the ideal Ia generated by a coincides with span a.
We say that E is non-atomic if it has no atoms. We say that E is atomic if E
is the band generated by all the atoms in it.

Consider an order bounded operator T : E → F between two Riesz spaces
with F Dedekind complete. Then the null ideal NT of T is defined by NT =
{x ∈ E : |T |(|x|) = 0}.

2 Unbounded Order-to-order Continuous Operators

Definition 1 An operator T : E → F between two Riesz spaces is said to be:

i. unbounded order-to-order continuous or strongly order continuous (so-
continuous for short), if xα

uo−→ 0 in E implies Txα
o−→ 0 in F for each net

(xα) ⊆ E.
ii. σ-unbounded order-to-order continuous or σ-strongly order continuous (σ-

so-continuous for short), if xn
uo−→ 0 in E implies Txn

o−→ 0 in F for each
sequence (xn) ⊆ E.
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The collection of all so-continuous operators of Lb(E,F ) will be denoted by
Lso(E,F ), that is

Lso(E,F ) := {T ∈ Lb(E,F ) : T is so-continuous}.

Similarly, Lσ−so(E,F ) will denote the collection of all order bounded operators
from E to F that are σ-so-continuous. That is,

Lσ−so(E,F ) := {T ∈ Lb(E,F ) : T is σ-so-continuous}.

Example 1 Let E be a Riesz space, e ∈ E+ and Be be a band generated by e in
E. The operator T : E → Be that defined by T (x) = |x| ∧ e is a so-continuous
operator.

Remark 1 1. The class of so-continuous operators differ from the calss of uo-
continuous operators. For example the identity operator I : c0 → c0 is a
uo-continuous operator, while it is not so-continuous.

2. Let F has order continuous norm. If T : E → F is so-continuous, then it
is a weakly compact operator. Let (xn) ⊆ E be norm bounded and uo-null
sequence. By assumption T (xn)

o−→ 0 in F . Because F has order continuous
norm, (T (xn)) is norm-null in F . So T is a σ-uon-continuous operator. By
Remark 2.9 of [8], T is M -weakly compact and therefore is weakly compact.

If T : E → F is a so-continuous operator, then it is also order continuous. In
the following example we show that the converse is not true in general.

Example 2 The identity I : ℓ1 → ℓ1 is order continuous, while it is not so-
continuous. Because (en) ⊆ ℓ1 is uo-null while it is not o-null.

As we said, if T : E → F is a so-continuous operator, it is an order continuous
and so it is an order bounded operator. In the following example we show that
the converse is not true in general.

Example 3 1. The identity operator I : c0 → c0 is order continuous and there-
fore is order bounded but is not so-continuous. Indeed, the standard basis
sequence of c0 is uo-converges to 0 but is not order convergent.

2. The operator T : ℓ1 → ℓ∞ defined by

T (x1, x2, . . .) = (

∞∑
i=1

xi,

∞∑
i=1

xi, . . .),

is order bounded. Now if (en)n is the standard basis of ℓ1, then en
uo−→ 0

in ℓ1 and T (en) = (1, 1, 1, . . .). Therefore T is not so-continuous.

Proposition 1 1. Let E, F be two Riesz spaces such that E is finite-dimensional.
Then Lso(E,F ) = Ln(E,F ) and Lσ−so(E,F ) = Lc(E,F ).

2. Let E, F be two Riesz spaces such that F is finite-dimensional. Then
Lso(E,F ) = Luo(E,F ) and Lσ−so(E,F ) = Lσ−uo(E,F ).

3. Let G be a sublattice of E. If T ∈ Lso(E,F ), then T ∈ Lso(G,F ).
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Proof 1. ( and 2.) Follows immediately if we observe that in a finite-dimensional
Riesz space order convergence is equivalent to uo-convergence.

3. Let (xα) ⊆ G be a uo-null net. It is obvious that (xα) is uo-null in E. By
assumption, we have T (xα)

o−→ 0 in F .

Problem 1 Let E and F be two Riesz spaces. Under what conditions can it
be said Lso(E,F ) = Ln(E,F ) ∩ Luo(E,F )?

Proposition 2 Let E, F , G be Riesz spaces. Then we have the following
assertions.
1. If T ∈ Lso(E,F ) and S ∈ Ln(F,G), then ST ∈ Lso(E,G). As a conse-

quence, Lso(E) is a left ideal for Ln(E). Similarly, Lσ−so(E) is a left ideal
for Lc(E).

2. If T ∈ Luo(E,F ) and S ∈ Lso(F,G), then ST ∈ Lso(E,G).
3. If T ∈ Lso(E,E), then Tn ∈ Lso(E,E) for all n ∈ N.
4. If E is σ-Dedekind complete and σ-laterally complete and S ∈ Lc(E,F )

and T ∈ Lσ−so(F,G), then TS ∈ Lσ−so(E,G). In this case, Lσ−so(E,F ) =
Lc(E,F ).

Proof 1. Let (xα) be a net in E such that xα
uo−→ 0. By assumption, Txα

o−→ 0.
So, STxα

o−→ 0. Hence, ST ∈ Lso(E,G).
2. Let (xα) be a net in E such that xα

uo−→ 0. By assumption, Txα
uo−→ 0. So,

STxα
o−→ 0. Therefore, ST ∈ Lso(E,G).

3. Let (xα) be a net in E such that xα
uo−→ 0. By assumption, Txα

o−→ 0 and
so Txα

uo−→ 0. Therefore, T 2xα
o−→ 0. Hence, T 2 ∈ Lso(E,E). By induction,

Tn ∈ Lso(E,E) for all n ∈ N.
4. Let E be a σ-Dedekind complete and σ-laterally complete Riesz space. By

Theorem 3.9 of [7], we see that a sequence (xn) in E is uo-null if and only
if it is order null. So, if (xn) be a sequence in E such that xn

uo−→ 0, then
xn

o−→ 0. Thus, Sxn
o−→ 0 and then TSxn

o−→ 0. Hence, TS ∈ Lσ−so(E,G).
Clearly, we have Lσ−so(E,F ) = Lc(E,F ). This ends the proof.

Let T : E → F be a positive operator between two Riesz spaces. We say
that an operator S : E → F is dominated by T (or that T dominates S)
whenever |Sx| ≤ T |x| holds for each x ∈ E.

Theorem 1 The following assertions are true.
1. If a positive so-continuous operator T : E → F dominates S, then S is

so-continuous.
2. If E and F are Archimedean laterally complete Riesz spaces, G is order

dense in Dedekind complete Riesz space E and T : G → F is order contin-
uous lattice homomorphism, then T is σ-so-continuous.

Proof 1. Let T : E → F be a positive so-continuous operator between two
Riesz spaces such that T dominates S : E → F and let xα

uo−→ 0 in E. It
is obvious that |xα|

uo−→ 0. So, by assumption, T |xα|
o−→ 0 and from the

inequality |Sx| ≤ T |x|, we have Sxα
o−→ 0. Hence, S is so-continuous.



110 Kazem Haghnejad Azar et al.

2. By Theorem 2.32 of [2], the formula

S(x) = sup{T (y) : y ∈ G and 0 ≤ y ≤ x}, x ∈ E+,

defines an extension of T from E to F , which is an order continuous lattice
homomorphism. Let (xn) ⊆ G is a uo-null sequence. By Theorem 3.10
of [7], (xn) is order-null. Since S is order continuous, therefore T (xn) =

S(xn)
o−→ 0 in F .

Recall from [4] that f ∈ E∗ is said to be un-continuous, if for each un-null net
(xα) ⊆ E, we have f(xα) → 0 in R.
It is clear that if E is an atomice Banach lattice with order continuous norm,
then by Theorem 5.3 of [4], each f ∈ E∗ is σ-so-continuous iff it is a σ-un-
continuous.

Remark 2 1. Let E be a atomic Banach lattice with order continuous norm. If
f : E → R is a positive σ-so-continuous, then f = λ1fa1

+λ2fa2
+...+λnfan

,
where λ1, λ2, ..., λn ∈ R and a1, a2, ..., an are atoms. Let (xn) ⊆ E be a un-
null net. Because E is atomic with order continuous norm, by Theorem 5.3
of [4], (xn) is uo-null. by assumption we have f(xn)

o−→ 0 and therefore it
is norm-null. By Corollary 5.4 of [10], the proof is complete.

2. If E is non-atomice and f : E → R is continuous and so-continuous, then
by Corollary 5.4 of [10], f = 0.

3. By Corollary 2.6 of [12], E∼
uo is an ideal of E∼

n (or E∼) and so E∼
so is an

ideal of E∼
n .

Remark 3 Let E be a Banach lattice and such that E∼
uo separates the points

of E. By Proposition 2.13 of [12], the following conditions are equivalent.
1. E is finite dimension space.
2. E∼

so = E∼
n .

3. E∼
so is an band of E∼.

Theorem 2 For an order bounded linear functional f on a Riesz space E the
following statements are equivalent.
1. f is so-continuous.
2. f+ and f− are both so-continuous.
3. |f | is so-continuous.

Proof (1) ⇒ (2) Let (xα) ⊆ E+ and xα
uo−→ 0. Let (rα) be a net in R such

that rα ↓ 0. According to Proposition 3.1 of [7], in view of f+x = sup{fy :
0 ≤ y ≤ x}, there exists a net (yα) in E with 0 ≤ yα ≤ xα for each α and
f+xα − rα ≤ fyα. So, f+xα ≤ fyα + rα. Since xα

uo−→ 0, we have yα
uo−→ 0.

Thus, by assumption, fyα
o−→ 0. It follows from f+xα ≤ (fyα + rα)

o−→ 0 that
f+xα

o−→ 0. Hence, f+ is so-continuous. Now, as f− = (−f)+, we conclude
that f− is also so-continuous.
(2) ⇒ (3) Follows from the identity |f | = f+ + f−.
(3) ⇒ (1) Follows immediately from Theorem 1 by observing that |f | domi-
nates f .
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Remark 4 One can easily formulate by himself the analogue of Theorem 2 for
σ-so-continuous operators.

Recall that a subset A of a Riesz space is said to be order closed whenever
(xα) ⊆ A and xα

o−→ x imply x ∈ A. An order closed ideal is referred to as a
band. Thus, an ideal A is a band if and only if (xα) ⊆ A and 0 ≤ xα ↑ x imply
x ∈ A. In the next theorem we show that E∼

so and E∼
σ−so are both bands of

E∼. The details follow.

Theorem 3 If E is a Riesz space, then E∼
so and E∼

σ−so are both bands of E∼.

Proof We only show that E∼
so is a band of E∼. That E∼

σ−so is a band can
be proven in a similar manner. Note first that if |g| ≤ |f | holds in E∼ with
f ∈ E∼

so, then from Theorems 3.1 and 3.2 it follows that g ∈ E∼
so). That is E∼

so

is an ideal of E∼. To see that the ideal E∼
so is a band, let 0 ≤ fλ ↑ f in E∼

with (fλ) ⊂ E∼
so, and let 0 ≤ xα

uo−→ 0 in E. Then for each fixed λ we have

0 ≤ f(xα) = ((f − fλ)(xα) + fλ(xα))
o−→ 0.

So, f(xα)
o−→ 0. Thus, f ∈ E∼

so, and the proof is finished.

3 Order-to-unbounded Order Continuous Operators

Definition 2 An operator T : E → F between two Riesz spaces is said to be:

1. order-to-unbounded order continuous (for short, ouo-continuous), if xα
o−→

0 in E implies Txα
uo−→ 0 in F for each net (xα) ⊆ E.

2. σ-order-to-unbounded order continuous (for short, σ-ouo-continuous), if
xn

o−→ 0 in E implies Txn
uo−→ 0 in F for each sequence (xn) ⊆ E.

The collection of all ouo-continuous (resp. σ-ouo-continuous) operators from
E into F will be denoted by Louo(E,F ), (resp. Lσ−ouo(E,F )).

It is obvious that each identity operator on Riesz space E is an ouo-
continuous operator and also we have f ∈ E∼ if and only if f ∈ E∼

ouo.

Theorem 4 Let E be a normed Riesz space with order continuous norm and F
be an atomic Banach lattice with order continuous norm, then each continuous
operator T : E → F is σ-ouo-continuous.

Proof Let (xn) ⊆ E be an order-null net. Since E has order continuous norm,
(xn) is a norm-null net. By continuity of T , we have, (T (xn)) is norm-null
and hence it is un-null. Because F is atomic with order continuous norm, by
Theorem 5.3 of [4], (T (xn)) is uo-null.

On the other hand, if T : E → F is ouo-continuous, it follows that T is a
σ-ouo-continuous operator. However, the converse is not necessarily true. An
example illustrating this point is given in Example 1.55 on page 46 of [2], where
a σ-ouo-continuous operator is presented that is not ouo-continuous. It should
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be noted that the operator T in Example 1.55 of [2] is σ-order continuous,
and therefore σ-ouo-continuous. However, it is not ouo-continuous, as can be
easily verified.
The following example shows that in general each ouo-continuous operator is
not uoor so-continuous.

Example 4
The functional f : ℓ1 → R defined by

f((x1, x2, ...)) =

∞∑
i=1

xi,

is ouo-continuous. Let (xα) ⊆ E be an order-null net. Since ℓ1 has order
continuous norm, therefore (xα) is norm-null and so f(xα) → 0 in R. On the
other hands, (en) ⊆ ℓ1 is uo-null. But (f(en)) is not uo-null in R. Hence f is
not a uo-continuous operator.
The identity operator I : ℓ1 → ℓ1 is ouo-continuous. Consider (en) ⊆ ℓ1 is uo-
null, but it is not order-null in ℓ1. Therefore I : ℓ1 → ℓ1 is not so-continuous.

Theorem 5 Every continuous operator from C[0, 1] to ℓ1 is σ-ouo-continuous.

Proof Let T : C[0, 1] → ℓ1 is a continuous operator. By Exercise 3 of page
313 of [2], T is a compact operator. Since C[0, 1]∗ has order continuous norm,
by Theorem 5.44 of [2], there exist a reflexive Banach lattice F , the lattice
homomorphism Q and compact operator S that T = S ◦Q. Let (xn) ⊆ C[0, 1]
be an o-null sequence. Because Q is lattice homomorphism and therefore is
order continuous, so (Q(xn)) is o-null in F . F is a reflexive, so it has order
continuous norm. Therefore (Q(xn)) is norm-null in F . By continiuty of S, we
have (S(Q(xn))) is norm-null and therefore is un-null in ℓ1. Since ℓ1 is atomic
with order continuous norm, by Theorem 5.3 of [4], T (xn) = (S(Q(xn))

uo−→ 0
in ℓ1.

In the following, we provide examples of new classifications of operators.

Example 5 1. Since, L1[0, 1] has order continuous norm and c0 is an atomic
Banach lattice with order continuous norm, the operator T : L1[0, 1] → c0,
given by

T (f) = (

∫ 1

0

f(x)sinxdx,

∫ 1

0

f(x)sin2xdx, . . . ),

is a σ-ouo-continuous operator.
2. The operator T : C[0, 1] → ℓ1, given by

T (f) = (

∫ 1

0
f(x) sinxdx

n2
,

∫ 1

0
f(x) sin 2xdx

n2
, . . . )

is a σ-ouo-continuous operator.
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3. Let B be a projection band of Riesz space E and PB the corresponding
band projection. It follows easily from 0 ≤ PB ≤ I (see Theorem 1.44 of
[2]) that if xα

o−→ 0 in E then PBxα
o−→ 0 in B and therefore PBxα

uo−→ 0 in
B. So PB is an ouo-continuous operator.

4. Let E∼ be the order dual of Riesz space E. It is obvious that each f ∈ E∼

is a ouo-continuous operator.

Remark 5 1. Let E, F be two Riesz spaces such that E is finite-dimensional.
Then Luo(E,F ) = Louo(E,F ) and Lσ−uo(E,F ) = Lσ−ouo(E,F ).

2. If T : E → F is an so-continuous operator and S : F → G is ouo-continuous,
it is obvious that S ◦ T : E → G is an uo-continuous operator.

3. If T : E → F is an ouo-continuous operator and S : F → G is so-continuous,
it is obvious that S ◦ T : E → G is an o-continuous operator.

4. If T : E → F is an ouo-continuous operator and S : F → G is uo-continuous,
it is obvious that S ◦ T : E → G is an ouo-continuous operator.

5. Let G be a sublattice of Dedekind complete Riesz space E. Then T : E → F
is ouo-continuous if and only if T |G is ouo-continuous.

6. Let T, S : E → F be two operators and 0 ≤ T ≤ S. If S is ouo-continuous,
then T is an ouo-continuous operator.

Since, the proofs of the three following theorems are straightforward, we will
not provide them here.

Theorem 6 Let E and F be two Riesz spaces that F is order continuous and
atomic. An operator T : E → F is σ-ouo-continuous if and only if σ-oun-
continuous operator.

Theorem 7 Let E and F be two Banach lattices. Then, by one of the following
assertions, T : E → F is an ouo-continuous operator.
1. T is order continuous,
2. T is uo-continuous,
3. T is so-continuous.

Theorem 8 1. Let T : E → F be an order bounded operator between two
Riesz spaces with F Dedekind complete. If T is an uo-continuous operator,
then T , T+, T− and |T | are ouo-continuous operators.

2. If T ∈ Luo(E,E), then Tn ∈ Louo(E,E) for all n ∈ N.

Theorem 9 Let E and F be two Riesz spaces that F is a Dedekind complete.
An operator 0 ≤ T : E → F is ouo-continuous if and only if xα ↓ 0 in E
implies T (xα) ↓ 0.

Proof Let T be an ouo-continuous operator and (xα) ⊆ E with xα ↓ 0 in E.
Because xα

o−→ 0 by assumption we have T (xα)
uo−→ 0. On the other hand

T (xα) ↓ z and therefore T (xα)
uo−→ z. Since uo-convergence are unique, we

have z = 0.
Conversely, now let (xα) ⊆ E be an o-null net. there exists another net (yβ)

in E such that yβ ↓ 0 and that for every β, there exists α0 such that |xα| ≤ yβ
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for all α ≥ α0. By assumption, we have T (yβ) ↓ 0. So |T (xα)| ≤ T |xα| ≤ T (yβ).
It means that T (xα)

o−→ 0 and hence T (xα)
uo−→ 0 in F .

Corollary 1 If F is Dedekind complete Riesz space and T : E → F is a
positive operator, then T is order continuous if and only if it is ouo-continuous.

Corollary 2 Let E and F be two Archimedean Riesz spaces that F is a
Dedekind complete. An operator 0 ≤ T : E → F is ouo-continuous if and
only if there is an order dense and topologically majorizing sublattice H such
that T |H is ouo-continuous.

Proposition 3 If T : E → F is a so-continuous operator, then its order ad-
joint T ′ : F∼ → E∼ is ouo-continuous.

Proof Let T : E → F be a so-continuous operator. It is obvious that it is
an order continuous operator. By Lemma 1.54 of [2], T is an order bounded
operator. Now by Theorem 1.73 of [2], its order adjoint T ′ : F∼ → E∼ is order
continuous. Therefore by Remark 7, T ′ is an ouo-continuous operator.

Remark 6 The converse of Proposition 3, is not true in general. Consider the
identity operator I : c0 → c0. Its order adjoint I : ℓ1 → ℓ1 is ouo-continuous,
while I : c0 → c0 is not so-continuous.

Theorem 10 Let T : E → F be an operator between to Riesz spaces.Then
there exist a vector lattice G, an operator T1 : E → G and an operator T2 : G →
F that T = T2 ◦ T1. Such that

1. T1 is ouo-continuous.
2. T is so-continuous if T2 is so-continuous.
3. T is ouo-continuous if T2 is ouo-continuous.

Proof Let T : E → F be an operator and (xα) ⊆ E be a uo-null net. We
have for all u ∈ E+, (|xα| ∧ u) is o-null. Let u ∈ E+ is an arbitrary vector
and Bu be a band generated by u in E. We put G = Bu and T1 : E → G by
T1(x) = PG(x), where PG is band projection from E to G. It is clear that T1

is well define and it is an ouo-continuous operator.
We put T2 : G → F by T2(z) = T2(PGx) = T (x) that z ∈ G. T2 is well

define and we have T = T2◦T1. Let (xα) ⊆ E be a uo-null. Therefore (PG(xα))

is uo-null. Now if T2 is so-continuous, we have T (xα) = T2(PG(xα))
o−→ 0. So

T is so-continuous. The same way, if T2 is ouo-continuous, then T is an ouo-
continuous operator.

Proposition 4 Let T : E → E be an operator. The following assertions are
equivalent.

1. E has finite dimensional.
2. T is so-continuous if and only if is ouo-continuous.
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Proof 1 ⇒ 2 Let E has finite dimentional, it is clear that T : E → E is a
so-continuous operator if and only if it is an ouo-continuous operator.

2 ⇒ 1 Conversely, let T : E → E is so-continuous if and only if it is an
ouo-continuous operator. Suppose E has infinite dimensional. Therefore there
exists a net (xα) ⊆ E that it is uo-null while it is not o-null. It is a contradiction
by assumption.
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