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Abstract Let E and F be two Riesz spaces. An operator T: E — F between
two Riesz spaces is said to be unbounded order-to-order continuous whenever
ZTo ~2 0 in E implies Tz, — 0 in F for each net (zo) € E. This paper aims
to investigate several properties of a novel class of operators and their connec-
tions to established operator classifications. Furthermore, we introduce a new
class of operators, which we refer to as order-to-unbounded order continuous
operators. An operator T: E — F between two Riesz spaces is said to be
order-to-unbounded order continuous (for short, ouo-continuous), if z, — 0
in E implies Tz, ~% 0 in F for each net (z,) C E. In this manuscript, we
investigate the lattice properties of a certain class of objects and demonstrate
that, under certain conditions, order continuity is equivalent to unbounded
order-to-order continuity of operators on Riesz spaces. Additionally, we estab-
lish that the set of all unbounded order-to-order continuous linear functionals
on a Riesz space E forms a band of E~.
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1 Introduction

The notion of unbounded order convergence, also known as wo-convergence,
was initially introduced in [5] and further developed in [11]. In recent years,
this concept has received significant attention and has been the subject of in-
vestigation in several papers, including [4,6,7]. An area of particular interest
is the study of geometric properties of Banach lattices using uo-convergence.
Wickstead provided a characterization of spaces in which weak convergence of
nets is equivalent to uo-convergence, see [13]. It was followed in [6], Gao char-
acterized the space E such that in its dual space E*, uo-convergence implies
w*-convergence and vice versa. He also characterized the spaces in whose dual
space simultaneous uo- and w*-convergence imply weak/norm convergence.
Bahramnezhad and Haghnejad Azar have introduced unbounded order con-
tinuous operators on Riesz spaces and investigated on the lattices properties
of this classification of operators, see [3]. Also in another article, Hanghne-
jad Azar, Jalili, and Moghimi introduced a new classification of operators
as order-to-norm topology continuous operators and order-to-weak topology
continuous operators in [9]. They investigated the properties of these oper-
ators, and left as an open problem whether every order-to-norm continuous
operator from a Riesz space to a normed Riesz space has a modulus. This
manuscript introduces a new classification of operators, namely strongly order
continuous operators, and investigates their lattice properties. Specifically, we
demonstrate that if an order bounded linear functional f on a Riesz space E
is strongly order continuous, then its modulus exists and is also strongly order
continuous.

Recall that a net (24)aca in a Riesz space E is order convergent (or, o-
convergent, for short) to z € F, denoted by x, - x whenever there exists
another net (yg)gep in E such that yg | 0 and for every 8 € B, there exists
ap € A such that |z, — x| < yp for all @ > ap. A net (z,) in a Riesz space
E is unbounded order convergent (or, uo-convergent for short) to z € E if
|to — 2| Au 2 0 for all u € Et. We denote this convergence by z, —
x and write that (z,) uo-convergent to x. This is an analogue of pointwise
convergence in function spaces. Let R4 be the Riesz space of all real-valued
functions on a non-empty set A, equipped with the pointwise order. It is easily
seen that a net (z,) in R uo-converges to € R4 if and only if it converges
pointwise to x. For instance in ¢y and Kp(l <p< oo), uo-convergence of
nets is the same as coordinate-wise convergence. Assume that (£2, X, u) is a
measure space and let £ = L,(p) for some 1 < p < co. Then uo-convergence
of sequences in L,(p) is the same as almost everywhere convergence. Note
that the wo-convergence in a Riesz space E does not necessarily correspond
to a topology on E. For example, let E' = ¢, the Banach lattice of real valued
convergent sequences. Put z,, = X}_, e, where (e,) is the standard basis.
Then (z,) is uo-convergent to x = (1,1, 1,...), but it is not norm convergent.

We show that the collection of all order bounded strongly order continuous
linear functionals on a Riesz space E is a band of E~ where E™ is order
dual of E [Theorem 2.7]. For unexplained terminology and facts on Banach
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lattices and positive operators, we refer the reader to [1,2]. Let us start with
the definition. Recall that an operator T: E — F between two Riesz spaces
is said to be order continuous (resp. o-order continuous) if x, = 0 (resp.
r, 2 0) in E implies Tz, = 0 (resp. Tz, = 0) in F. The collection of all
order continuous operators of Ly (E, F') (the vector space of all order bounded
operators from E to F) will be denoted by L, (E, F), that is

L,(E,F):={T € L)(E,F) : T is order continuous}.

Similarly, L.(E, F) will denote the collection of all order bounded operators
from E to F that are o-order continuous. That is,

L.E,F):={T € Ly(E,F) : T is o-order continuous}.

Let E, F be two Riesz spaces. Recall from [3], an operator T: E — F be-
tween two Riesz spaces is said to be uo-continuous, if 2, — 0 in E implies
T(zy) % 0 in F. The collection of all uo-continuous operators will be de-
noted by L,,(E,F). Recall that from [8], a continuous operator T: E — F
between two normed Riesz spaces is said to be o-uon-continuous, if for each

norm bounded uo-null sequence (x,) C F implies T(x,,) 6 i F. When
T: E — F is an order bounded, its order adjoint 77: F~ — E"~ satisfies

for all f € F~ and x € E. A Riesz space is said to be laterally complete
(resp. o-laterally complete) whenever every subset of pairwise disjoint positive
vectors (if every disjoint sequence) has a supremum. For a set 4, R4 is an
example of o-laterally complete Riesz space. A positive non-zero vector a in a
Riesz space E is an atom if the ideal I, generated by a coincides with span a.
We say that F is non-atomic if it has no atoms. We say that F is atomic if £
is the band generated by all the atoms in it.

Consider an order bounded operator T: £ — F' between two Riesz spaces
with F' Dedekind complete. Then the null ideal Ny of T' is defined by Ny =
{z e E:[T|(|z]) = 0}.

2 Unbounded Order-to-order Continuous Operators

Definition 1 An operator T: E — F between two Riesz spaces is said to be:

i. unbounded order-to-order continuous or strongly order continuous (so-
continuous for short), if x, ~% 0 in E implies Tz, = 0 in F for each net
(zo) C E.

ii. o-unbounded order-to-order continuous or o-strongly order continuous (o-
so-continuous for short), if z, 2% 0 in E implies Tz, — 0 in F for each
sequence (x,) C E.
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The collection of all so-continuous operators of Ly(E, F') will be denoted by
L. (E, F), that is

Ls(E,F):={T € L,(E,F) : T is so-continuous}.

Similarly, L,_s,(F, F') will denote the collection of all order bounded operators
from E to F that are o-so-continuous. That is,

Ly_so(E,F):={T € Ly(E, F) : T is o-so-continuous}.

Ezample 1 Let E be a Riesz space, e € ET and B, be a band generated by e in
E. The operator T': E — B, that defined by T'(x) = |z| A e is a so-continuous
operator.

Remark 1 1. The class of so-continuous operators differ from the calss of uo-
continuous operators. For example the identity operator I: cy — c¢q is a
uo-continuous operator, while it is not so-continuous.

2. Let F has order continuous norm. If T: E — F' is so-continuous, then it
is a weakly compact operator. Let (x,,) € E be norm bounded and uo-null
sequence. By assumption T'(x,,) 2y 0in F. Because F has order continuous
norm, (T'(z,)) is norm-null in F. So T is a o-uon-continuous operator. By
Remark 2.9 of [8], T' is M-weakly compact and therefore is weakly compact.

If T: E — F is a so-continuous operator, then it is also order continuous. In
the following example we show that the converse is not true in general.

Example 2 The identity I: ¢' — ¢! is order continuous, while it is not so-
continuous. Because (e,) C ¢' is wo-null while it is not o-null.

As we said, if T: E — F is a so-continuous operator, it is an order continuous
and so it is an order bounded operator. In the following example we show that
the converse is not true in general.

Ezxample 3 1. The identity operator I: ¢y — ¢g is order continuous and there-
fore is order bounded but is not so-continuous. Indeed, the standard basis
sequence of ¢q is uo-converges to 0 but is not order convergent.

2. The operator T: ¢ — ¢>° defined by

T(ZE171‘2,. . ) = (in,Zzi, .. .),
i=1 i=1

is order bounded. Now if (e,), is the standard basis of ¢, then e, —= 0
in /! and T'(e,) = (1,1,1,...). Therefore T is not so-continuous.

Proposition 1 1. Let E, F be two Riesz spaces such that E is finite-dimensional.
Then Lyo(E,F) = L,(E,F) and Ly_s,(E,F) = L.(E, F).

2. Let E, F be two Riesz spaces such that F is finite-dimensional. Then
Lso(E,F)=Lyo(E,F) and Ly—so(E,F) = Ly—_yo(E, F).

3. Let G be a sublattice of E. If T € Lso(E, F), then T € Ly, (G, F).
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Proof 1. (and 2.) Follows immediately if we observe that in a finite-dimensional
Riesz space order convergence is equivalent to uo-convergence.
3. Let (z4) C G be a uo-null net. It is obvious that (z4) is uo-null in E. By

assumption, we have T(x,) = 0 in F.

Problem 1 Let E and F be two Riesz spaces. Under what conditions can it
be said Lgo(E, F) = Ly (E,F) N Lyo(E, F)?

Proposition 2 Let E, F, G be Riesz spaces. Then we have the following
assertions.

1. If T € Ly(E,F) and S € L,(F,G), then ST € Ly,(E,G). As a conse-
quence, Lgo(E) is a left ideal for L, (E). Similarly, L,_s,(E) is a left ideal
for L.(E).

2. If T € Luo(E,F) and S € Lyo(F,G), then ST € Lyo(E, G).

If T € Lyo(E,E), then T™ € Lyo(E, E) for alln € N.

4. If E is o-Dedekind complete and o-laterally complete and S € L.(E,F)
andT € L,_so(F,G), thenTS € L,_so(E,G). In this case, L,_s,(E, F) =
Lo(B, F).

o

Proof 1. Let (x,) be a net in E such that z, — 0. By assumption, Tz, — 0.
So, STzq 2 0. Hence, ST € Lo (E,G).

2. Let (z,) be a net in E such that z,, 2% 0. By assumption, Tz, — 0. So,
STzq 2 0. Therefore, ST € Ly, (E,G).

3. Let (z,) be a net in E such that z, — 0. By assumption, Tz, — 0 and
s0 Ty 2 0. Therefore, T?z, 2 0. Hence, T? € Ly, (E, E). By induction,
T" € Lso(E,E) for all n € N.

4. Let F be a 0-Dedekind complete and o-laterally complete Riesz space. By
Theorem 3.9 of [7], we see that a sequence (z,,) in E is uo-null if and only
if it is order null. So, if (2,,) be a sequence in E such that z,, —= 0, then
Zn — 0. Thus, Sz, - 0 and then TSz, = 0. Hence, T'S € Lo—so(E,G).
Clearly, we have L,_s,(E,F) = L.(E, F). This ends the proof.

Let T: E — F be a positive operator between two Riesz spaces. We say
that an operator S: E — F is dominated by T (or that T dominates S)
whenever |Sz| < T'|z| holds for each z € E.

Theorem 1 The following assertions are true.

1. If a positive so-continuous operator T: E — F dominates S, then S is
S0-continuous.

2. If E and F are Archimedean laterally complete Riesz spaces, G is order
dense in Dedekind complete Riesz space E and T: G — F' is order contin-
uous lattice homomorphism, then T is o-so-continuous.

Proof 1. Let T: E — F be a positive so-continuous operator between two
Riesz spaces such that 7' dominates S: E — F and let z, — 0 in E. It
is obvious that |z, % 0. So, by assumption, T|z,| = 0 and from the
inequality |Sz| < T'|z|, we have Sz, = 0. Hence, S is so-continuous.
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2. By Theorem 2.32 of [2], the formula
S(x) =sup{T(y) :y€Gand 0 <y <z}, v€ET,

defines an extension of T" from F to F', which is an order continuous lattice
homomorphism. Let (z,) € G is a wo-null sequence. By Theorem 3.10
of [7], (zn) is order-null. Since S is order continuous, therefore T'(x,) =
S(x,) > 0in F.

Recall from [4] that f € E* is said to be un-continuous, if for each un-null net
(zo) € E, we have f(z,) — 0 in R.

It is clear that if E' is an atomice Banach lattice with order continuous norm,
then by Theorem 5.3 of [4], each f € E* is o-so-continuous iff it is a o-un-
continuous.

Remark 2 1. Let E be a atomic Banach lattice with order continuous norm. If
f+ E — Risa positive o-so-continuous, then f = A1 fo, + A2 fa, +-- -+ A0 fa,
where A1, Aa, ..., A\, € R and aq, a9, ..., a, are atoms. Let (x,,) C E be a un-
null net. Because E is atomic with order continuous norm, by Theorem 5.3
of [4], (z,,) is uo-null. by assumption we have f(z,) 2 0 and therefore it
is norm-null. By Corollary 5.4 of [10], the proof is complete.

2. If FE is non-atomice and f: E — R is continuous and so-continuous, then
by Corollary 5.4 of [10], f = 0.

3. By Corollary 2.6 of [12], E,. is an ideal of E’ (or E~) and so E7, is an
ideal of E;.

Remark 3 Let E be a Banach lattice and such that E;; separates the points
of E. By Proposition 2.13 of [12], the following conditions are equivalent.

1. FE is finite dimension space.
2. B, =FEr.

3. E7, is an band of E~.

Theorem 2 For an order bounded linear functional f on a Riesz space E the
following statements are equivalent.

1. f is so-continuous.
2. fT and f~ are both so-continuous.
3. |f| is so-continuous.

Proof (1) = (2) Let (zo) € E* and 2, > 0. Let (r,) be a net in R such
that 7, | 0. According to Proposition 3.1 of [7], in view of fTz = sup{fy :
0 < y < a}, there exists a net (y,) in E with 0 < y, < x4 for each o and
ftea —ra < fya. So, fT2a < fya + 7. Since o —> 0, we have yo — 0.
Thus, by assumption, fy, — 0. It follows from f*z, < (fya + ra) — 0 that
ffze 2 0. Hence, f is so-continuous. Now, as f~ = (—f)*, we conclude
that f~ is also so-continuous.

(2) = (3) Follows from the identity |f| = f* + f~.

(3) = (1) Follows immediately from Theorem 1 by observing that |f| domi-
nates f.
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Remark 4 One can easily formulate by himself the analogue of Theorem 2 for
o-so-continuous operators.

Recall that a subset A of a Riesz space is said to be order closed whenever
(o) € A and 24 > x imply 2 € A. An order closed ideal is referred to as a
band. Thus, an ideal A is a band if and only if (z,) € A and 0 < 2, T x imply
2z € A. In the next theorem we show that E, and E}_,, are both bands of
E™. The details follow.

Theorem 3 If E is a Riesz space, then E7, and E7

g—So

are both bands of E™.

Proof We only show that E7, is a band of E~. That £} _ is a band can
be proven in a similar manner. Note first that if |g| < |f| holds in E~ with
f € EZ,, then from Theorems 3.1 and 3.2 it follows that g € E,). That is E7,

is an ideal of E~. To see that the ideal E7, is a band, let 0 < fy 1 f in E~
with (f)) C EZ, and let 0 < z,, 2% 0 in E. Then for each fixed \ we have

0 < f(za) = ((f = fA)(@a) + fr(za)) = 0.
So, f(xa) = 0. Thus, f € EZ,, and the proof is finished.

s07

3 Order-to-unbounded Order Continuous Operators

Definition 2 An operator T': E — F between two Riesz spaces is said to be:

1. order-to-unbounded order continuous (for short, ouo-continuous), if z, —
0 in F implies Tz, — 0 in F for each net (o) C E.

2. o-order-to-unbounded order continuous (for short, o-ouo-continuous), if
z, 2 0in E implies Tz, —> 0 in F for each sequence (x,) C F.

The collection of all ouo-continuous (resp. o-ouo-continuous) operators from
E into F will be denoted by Lyyo(E, F), (resp. Lo—ouo(E, F)).

It is obvious that each identity operator on Riesz space F is an ouo-
continuous operator and also we have f € £~ if and only if f € E}; .

Theorem 4 Let E be a normed Riesz space with order continuous norm and F'
be an atomic Banach lattice with order continuous norm, then each continuous
operator T': E — F' is o-ouo-continuous.

Proof Let (z,,) € E be an order-null net. Since E has order continuous norm,
(2,,) is a norm-null net. By continuity of T, we have, (T'(z,)) is norm-null
and hence it is un-null. Because F' is atomic with order continuous norm, by
Theorem 5.3 of [4], (T'(x,)) is wo-null.

On the other hand, if T: E — F is ouo-continuous, it follows that T is a
o-ouo-continuous operator. However, the converse is not necessarily true. An
example illustrating this point is given in Example 1.55 on page 46 of [2], where
a o-ouo-continuous operator is presented that is not ouo-continuous. It should
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be noted that the operator T in Example 1.55 of [2] is o-order continuous,
and therefore o-ouo-continuous. However, it is not ouo-continuous, as can be
easily verified.

The following example shows that in general each ouo-continuous operator is
not uoor so-continuous.

Ezxample 4
The functional f: ' — R defined by

f((z1,m2,...)) = Zx

is ouo-continuous. Let (z,) C E be an order-null net. Since ¢! has order
continuous norm, therefore (z,) is norm-null and so f(z,) — 0 in R. On the
other hands, (e,) C ¢! is uo-null. But (f(e,)) is not uo-null in R. Hence f is
not a wo-continuous operator.

The identity operator I: ¢! — ¢! is ouo-continuous. Consider (e,,) C ¢! is uo-
null, but it is not order-null in ¢'. Therefore I': ¢! — ¢* is not so-continuous.

Theorem 5 Every continuous operator from C[0,1] to ¢! is o-ouo-continuous.

Proof Let T: C[0,1] — ¢! is a continuous operator. By Exercise 3 of page
313 of [2], T is a compact operator. Since C[0, 1]* has order continuous norm,
by Theorem 5.44 of [2], there exist a reflexive Banach lattice F', the lattice
homomorphism @ and compact operator S that T = SoQ. Let (x,) C C[0,1]
be an o-null sequence. Because () is lattice homomorphism and therefore is
order continuous, so (Q(x,)) is o-null in F. F is a reflexive, so it has order
continuous norm. Therefore (Q(z,)) is norm-null in F'. By continiuty of S, we
have (S(Q(xy))) is norm-null and therefore is un-null in ¢. Since ¢! is atomic
with order continuous norm, by Theorem 5.3 of [4], T(z,,) = (S(Q(x,)) ~= 0
in /1.

In the following, we provide examples of new classifications of operators.

Ezample 5 1. Since, L]0, 1] has order continuous norm and ¢g is an atomic
Banach lattice with order continuous norm, the operator T': L0, 1] — co,
given by

1 1
T(f) = (/0 f(x)sinxdx,/o f(@)sin2zdx, .. .),

is a o-ouo-continuous operator.
2. The operator T': C[0,1] — ¢!, given by

_ (fol f@)sinzds [} f(z)sin2zdz

n2 ’ n2

T(f)

PI

is a o-ouo-continuous operator.
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3. Let B be a projection band of Riesz space E and Ppg the corresponding
band projection. It follows easily from 0 < Pg < I (see Theorem 1.44 of
[2]) that if z, 2 0in F then Pgzo = 0in B and therefore Ppz, — 0 in
B. So Pp is an ouo-continuous operator.

4. Let E~ be the order dual of Riesz space E. It is obvious that each f € E~
is a ouo-continuous operator.

Remark 5 1. Let E, I be two Riesz spaces such that E is finite-dimensional.
Then Lyo(E,F) = Louo(E, F) and Ly_yo(E, F) = Ly—ouo(E, F).

2. If T: E — F is an so-continuous operator and S: F' — G is ouo-continuous,
it is obvious that SoT: E — (G is an uo-continuous operator.

3. If T: E — F is an ouo-continuous operator and S: F' — G is so-continuous,
it is obvious that SoT: E — @ is an o-continuous operator.

4. If T: E — F is an ouo-continuous operator and S: F' — G is uo-continuous,
it is obvious that SoT: E — G is an ouo-continuous operator.

5. Let G be a sublattice of Dedekind complete Riesz space E. ThenT: E — F
is ouo-continuous if and only if T|¢ is ouo-continuous.

6. Let T, S: E — F be two operators and 0 < T < S. If S is ouo-continuous,
then T is an ouo-continuous operator.

Since, the proofs of the three following theorems are straightforward, we will
not provide them here.

Theorem 6 Let E and F' be two Riesz spaces that F' is order continuous and
atomic. An operator T: E — F is o-ouo-continuous if and only if o-oun-
continuous operator.

Theorem 7 Let E and F' be two Banach lattices. Then, by one of the following
assertions, T: E — F is an ouo-continuous operator.

1. T is order continuous,
2. T is uo-continuous,
3. T is so-continuous.

Theorem 8 1. Let T: E — F be an order bounded operator between two
Riesz spaces with F' Dedekind complete. If T' is an uo-continuous operator,
then T, TT, T~ and |T| are ouo-continuous operators.

2. If T € Lyo(E,E), then T" € Loyo(E, E) for alln € N.

Theorem 9 Let E and F be two Riesz spaces that F' is a Dedekind complete.
An operator 0 < T: E — F is ouo-continuous if and only if xo | 0 in E
implies T'(z4) | 0.

Proof Let T be an ouo-continuous operator and (z,) C E with z, | 0 in E.
Because z, - 0 by assumption we have T(z,) —% 0. On the other hand
T(z4) | z and therefore T(z,) - 2. Since uo-convergence are unique, we
have z = 0.

Conversely, now let (z,) C E be an o-null net. there exists another net (yg)
in E such that yg | 0 and that for every §3, there exists o such that |z,| < ygs
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for all @ > ayp. By assumption, we have T'(yg) | 0. So |T(zo)| < T|zo| < T(yg).
It means that 7(z,) = 0 and hence T'(z,) —> 0 in F.

Corollary 1 If F is Dedekind complete Riesz space and T: E — F is a
positive operator, then T is order continuous if and only if it is ouo-continuous.

Corollary 2 Let E and F be two Archimedean Riesz spaces that F is a
Dedekind complete. An operator 0 < T: E — F is ouo-continuous if and
only if there is an order dense and topologically majorizing sublattice H such
that T|g is ouo-continuous.

Proposition 3 If T: E — F is a so-continuous operator, then its order ad-
joint T': F~ — E~ s ouo-continuous.

Proof Let T: E — F be a so-continuous operator. It is obvious that it is
an order continuous operator. By Lemma 1.54 of [2], T is an order bounded
operator. Now by Theorem 1.73 of [2], its order adjoint T': F~ — E~ is order
continuous. Therefore by Remark 7, T” is an ouo-continuous operator.

Remark 6 The converse of Proposition 3, is not true in general. Consider the
identity operator I: co — cg. Its order adjoint I: ¢ — ¢! is ouo-continuous,
while I: cg — ¢p is not so-continuous.

Theorem 10 Let T: E — F be an operator between to Riesz spaces. Then
there exist a vector lattice G, an operator Ty : E — G and an operator Ty : G —
F that T =Ty o Ty. Such that

1. T is ouo-continuous.
2. T is so-continuous if Ty is so-continuous.
3. T is ouo-continuous if Ty is ouo-continuous.

Proof Let T: E — F be an operator and (z,) € E be a wo-null net. We
have for all u € EY, (|zo| A u) is o-null. Let u € ET is an arbitrary vector
and B, be a band generated by u in F. We put G = B, and Ty: £ — G by
Ty (x) = Pg(z), where Pg is band projection from E to G. It is clear that T;
is well define and it is an ouo-continuous operator.

We put To: G — F by Ts(z) = Ta(Pex) = T(x) that z € G. Ty is well
define and we have T' = T 0T3. Let (z,) C F be a uo-null. Therefore (Pg(z,))
is wo-null. Now if T is so-continuous, we have T'(z4) = To(Pg(z4)) = 0. So
T is so-continuous. The same way, if T, is ouo-continuous, then T is an ouo-
continuous operator.

Proposition 4 Let T: E — E be an operator. The following assertions are
equivalent.

1. E has finite dimensional.
2. T is so-continuous if and only if is ouo-continuous.
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Proof 1 = 2 Let E has finite dimentional, it is clear that T: E — E is a
so-continuous operator if and only if it is an ouo-continuous operator.

2 = 1 Conversely, let T: E — FE is so-continuous if and only if it is an
ouo-continuous operator. Suppose E has infinite dimensional. Therefore there
exists a net (x,) C F that it is uo-null while it is not o-null. It is a contradiction
by assumption.
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