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Abstract Suppose that G is a connected graph constructed from pairwise
disjoint connected graphs G1, . . . , Gt by selecting a vertex of G1, a vertex of G2,
and identifying these two vertices. Then continue in this manner inductively.
The graphs G1, . . . , Gk are the primary subgraphs of G. Some particular cases
of these graphs are important in chemistry which we consider them in this
paper and study their elliptic Sombor index.
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1 Introduction

A molecular graph is a simple graph such that its vertices correspond to the
atoms and the edges to the bonds of a molecule. Suppose that G = (V,E) is
a finite, connected, simple graph. As usual the degree of a vertex v in G is
denoted by dv.

The topological indices are the numerical parameters associated with the
graph which are usually graph invariant. The topological index of a graph is
based on the properties of graphs such as degree, distance, number of non-
incident edges and so on. From this index it is possible to analyze the math-
ematical values and further investigate some physicochemical properties of a
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molecule. Therefore, it is also called a molecular descriptor. The first distance
based topological index, is Wiener index

W (G) =
∑

{u,v}⊆G

d(u, v) =
1

2

∑
u,v∈V (G)

d(u, v),

with the summation runs over all pairs of vertices of G [27]. The Wiener index
is one of the most used topological indices with high correlation with many
physical and chemical indices of molecular compounds [27]. The Sombor index
which is a vertex-degree-based molecular structure descriptor introduced by
Gutman in [16] and is defined as

SO(G) =
∑

uv∈E(G)

√
d2u + d2v.

In a remarkably brief period, the Sombor index has garnered considerable
attention from both mathematicians and theoretical chemists. Redžepović [23]
delved into its efficacy in prognosticating alkanes’ entropy as well as enthalpy
of vaporization, utilizing statistical analyzing techniques. Owing to its notably
enhanced predictive capabilities, the Sombor index is adopted regarding the
purpose of modeling thermodynamic properties of organic molecular structures
[19]. For more details and aspects on the Sombor index we refer the reader to
[1,5,6,8,12,14,15,23,26].

In [17] a novel geometric method is proposed for constructing vertex-
degree-based molecular structure descriptors (topological indices). The model
is based on an ellipse whose focal points represent the degrees of a pair of
adjacent vertices. The approach enables a geometric interpretation of several
previously known topological indices, and lead to design of a few new. The
area of the ellipse induces a vertex-degree-based topological index of remark-
able simplicity, which is called elliptic Sombor index. In [17]), the elliptic
Sombor index (ESO) of G is defined as

ESO(G) =
∑

uv∈E(G)

(du + dv)
√
d2u + d2v.

In [10], the extremal value problem for ESO over the set of (connected) graphs
with equal number of vertices has studied. Also, the elliptic Sombor energy
has investigated in [2].

Suppose that G is a connected graph constructed from pairwise disjoint
connected graphs G1, . . . , Gt as follows. Select a vertex of G1, a vertex of G2,
and identify these two vertices. Then continue in this manner inductively. Note
that the graph G constructed in this way has a tree-like structure, the Gi’s
being its building stones (see Figure 1). The graphs G1, . . . , Gk are the primary
subgraphs of G. Usually say that G is a graph (polymer graph), obtained by
point-attaching from G1, . . . , Gt and that Gi’s are the monomer units of G. A
particular case of this construction is the decomposition of a connected graph
into blocks (see [9]). For more details and aspects on the polymers, we refer
the reader to [1,11,13]. In [1] we have studied the Sombor index of polymers.
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Fig. 1 A graph G obtained by point-attaching from G1, . . . , Gt .

We follow the paper [1] and since we think that the similar results for
elliptic Sombor index are useful for researchers, we consider the elliptic Sombor
index of graphs from primary subgraphs. In Section 2, the elliptic Sombor
index of some graphs are computed from their monomer units. In Section 3,
we apply the results of Section 2, in order to obtain the elliptic Sombor index
of families of graphs that are of importance in chemistry.

2 Results for graph from primary subgraphs

In this section, we study the elliptic Sombor index of polymers (see [1]). By
the definition of the elliptic Sombor index, we have the following easy result:

Proposition 1 If G is a polymer graph with composed of monomers {Gi}ki=1,
then

ESO(G) >

k∑
i=1

ESO(Gi).

We consider some particular cases of these graphs and study their elliptic
Sombor index. As an example of point-attaching graph, consider the graph Km

and m copies of Kn. Suppose that the graph Q(m,n) is obtained by identifying
each vertex of Km with a vertex of a unique Kn. The graph Q(5, 4) is shown
in Figure 2. The ESO index of Q(m,n) is easy to compute.

Theorem 1 For the graph Q(m,n) (see Figure 2), and n ≥ 2 we have:

ESO(Q(m,n)) = m((m+ n− 2)2(m− 1) + (n− 1)3(n− 2))
√
2

+m(n− 1)(m+ 2n− 3)
√

(m+ n− 2)2 + (n− 1)2.

Proof There are m(m−1)
2 edges with endpoints of degree m+n− 2. Also there

are m(n − 1) edges with endpoints of degree m + n − 2 and n − 1 and there
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Fig. 2 The graph Q(m,n) and Q(5, 4), respectively.
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Fig. 3 Link of n graphs G1, G2, . . . , Gn

are m(n− 1)(n2 − 1) edges with endpoints of degree n− 1. Therefore

ESO(Q(m,n)) =
m(m− 1)(2m+ 2n− 4)

2

√
(m+ n− 2)2 + (m+ n− 2)2

+m(n− 1)(m+ 2n− 3)
√
(m+ n− 2)2 + (n− 1)2

+m(n− 1)(2n− 2)(
n

2
− 1)

√
(n− 1)2 + (n− 1)2,

and so we have the result. ⊓⊔

To obtain more results, we need the following theorem.

Theorem 2 Suppose that G = (V,E) is a graph and e = uv ∈ E. If dw is the
degree of vertex w in G, then,

ESO(G− e) < ESO(G)− |d2u − d2v|√
2

.

Proof First we remove edge e and find ESO(G−e). Obviously, by adding edge
e to G− e and (du + dv)

√
d2u + d2v to SO(G− e), the ESO(G) is greater than

ESO(G− e). Since
√
a2 + b2 ≥ |a−b|√

2
, so

ESO(G) > ESO(G−e)+(du+dv)
√
d2u + d2v ≥ ESO(G−e)+

(du + dv)|du − dv|√
2

,

and therefore we have the result. ⊓⊔

In the following we study the elliptic Sombor index for links of graphs,
circuits of graphs, chains of graphs, and bouquets of graphs.

Theorem 3 Suppose that G is a polymer graph with composed of monomers
{Gi}ki=1 with respect to the vertices {xi, yi}ki=1. If G is the link of graphs (see
Figure 3), then,

ESO(G) >
k∑

i=1

ESO(Gi) +
k−1∑
i=1

|d2xi+1
− d2yi

|
√
2

.
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Proof First we remove edge y1x2 (Figure 3). By Proposition 2, we have

ESO(G) > ESO(G− y1x2) +
|d2y1

− d2x2
|

√
2

.

If G′ is the link graph related to graphs {Gi}ki=2 with respect to the vertices
{xi, yi}ki=2, then,

ESO(G− y1x2) = ESO(G1) + ESO(G′),

and so,

ESO(G) > ESO(G1) + ESO(G′) +
|d2y1

− d2x2
|

√
2

.

By continuing this process, we have the result. ⊓⊔

Theorem 4 Let G1, G2, . . . , Gk be a finite sequence of pairwise disjoint con-
nected graphs and let xi ∈ V (Gi). Suppose that G is the circuit of graphs
{Gi}ki=1 with respect to the vertices {xi}ki=1 and obtained by identifying the
vertex xi of the graph Gi with the i-th vertex of the cycle graph Ck (Figure 4).
Then,

ESO(G) >
|d2x1

− d2xn
|

√
2

+

k∑
i=1

ESO(Gi) +

k−1∑
i=1

|d2xi
− d2xi+1

|
√
2

.

Proof First we remove edge xnx1 (Figure 4). By Proposition 2, we have

ESO(G) > ESO(G− xnx1) +
|d2xn

− d2x1
|

√
2

.

Now we remove edge x1x2. So,

ESO(G) > ESO(G− {xnx1, x1x2}) +
|d2xn

− d2x1
|

√
2

+
|d2x2

− d2x1
|

√
2

.

Suppose that G′ is the graph related to circuit graph with {Gi}ki=2 with respect
to the vertices {xi}ki=2 and removing the edge xnx1. Then we have,

ESO(G− {xnx1, x1x2}) = ESO(G1) + ESO(G′),

and therefore,

ESO(G) > ESO(G1) + ESO(G′) +
|d2xn

− d2x1
|

√
2

+
|d2x2

− d2x1
|

√
2

.

By continuing this process, we have the result. ⊓⊔

In the following theorem we present another lower bound for the elliptic
Sombor index of the circuit of graphs.
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Fig. 4 Circuit of n graphs G1, G2, . . . , Gn

Theorem 5 Let G1, G2, . . . , Gk be a finite sequence of pairwise disjoint con-
nected graphs and let xi ∈ V (Gi). Suppose that G is the circuit of graphs
{Gi}ki=1 with respect to the vertices {xi}ki=1 and obtained by identifying the
vertex xi of the graph Gi with the i-th vertex of the cycle graph Ck (Figure 4).
Then,

ESO(G) ≥ 8k
√
2 +

k∑
i=1

ESO(Gi).

The equality holds if and only if for every 1 ≤ i ≤ k, Gi = K1.

Proof Let di be the degree of the vertex xi before creating G. Since d(xi) =
di + 2, we have:

ESO(G) = (dk + 2 + d1 + 2)
√

(dk + 2)2 + (d1 + 2)2

+

k−1∑
i=1

(di + 2 + di+1 + 2)
√

(di + 2)2 + (di+1 + 2)2

+
k∑

i=1

( ∑
uv∈E(Gi−xi)

(du + dv)
√

d2u + d2v +
∑

xi∼u∈Gi

(di + 2 + du)
√

(di + 2)2 + d2u
)

≥ 4
√
4 + 4 +

k−1∑
i=1

4
√
4 + 4

+

k∑
i=1

( ∑
uv∈E(Gi−xi)

(du + dv)
√

d2u + d2v +
∑

xi∼u∈Gi

(di + 2 + du)
√

(di + 2)2 + d2u
)

= 8k
√
2 +

k∑
i=1

SO(Gi).

If Gi has at least one edge then the equality does not hold and so we have
the result. ⊓⊔
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Fig. 5 Chain of n graphs G1, G2, . . . , Gn

Theorem 6 Let G1, G2, . . . , Gn be a finite sequence of pairwise disjoint con-
nected graphs and let xi, yi ∈ V (Gi). Suppose that C(G1, . . . , Gn) is the chain
of graphs {Gi}ni=1 with respect to the vertices {xi, yi}ki=1 which obtained by
identifying the vertex yi with the vertex xi+1 for i = 1, 2, . . . , n− 1 (Figure 5).
Then,

(i)

ESO(C(G1, . . . , Gn)) > ESO(C(G1, . . . , Gn−1)+ESO(Gn−yn−1)+
∑

u∼yn−1
u∈V (Gn)

|d2u − d2yn−1
|

√
2

.

(ii)

ESO(C(G1, . . . , Gn)) > ESO(C(G1))+

n∑
i=2

ESO(Gi−yi−1)+

n−1∑
i=1

∑
u∼yi

u∈V (Gi+1)

|d2u − d2yi |√
2

.

Proof (i) Consider C(G1, . . . , Gn) in Figure 5. Using inductively Theorem 2
for all edges in Gn which one of the their end vertices is yn−1 we have the
result.

(ii) It follows by induction and Part (i). ⊓⊔

Similar to the Theorem 6 we have:

Theorem 7 Let G1, G2, . . . , Gn be a finite sequence of pairwise disjoint con-
nected graphs and let xi ∈ V (Gi). Let B(G1, . . . , Gn) be the bouquet of graphs
{Gi}ni=1 with respect to the vertices {xi}ni=1 and obtained by identifying the
vertex xi of the graph Gi with x (see Figure 6). Then,

ESO(B(G1, . . . , Gn)) > ESO(G1)+

n∑
i=2

ESO(Gi−xi)+

n−1∑
i=1

∑
u∼xi+1

u∈V (Gi+1)

|d2u − d2xi+1
|

√
2

.

3 Chemical applications

In this section, using results of Section 2 to obtain the elliptic Sombor index
of families of graphs that are of importance in chemistry.
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Fig. 6 Bouquet of n graphs G1, G2, . . . , Gn and x1 = x2 = . . . = xn = x
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Fig. 7 The graph S6,2,8

3.1 Spiro-chains

Spiro-chains are defined in [7]. Using the concept of chain of graphs, a spiro-
chain can be defined as a chain of cycles. We denote by Sq,h,k the chain of k
cycles Cq in which the distance between two consecutive contact vertices is h
(see S6,2,8 in Figure 7).

Theorem 8 ESO index of the graph Sq,h,k, for h ≥ 2 is:

ESO(Sq,h,k) = (8qk − 32k + 32)
√
2 + (24k − 24)

√
5.

Proof There are 4(k − 1) edges with endpoints of degree 2 and 4. Also there
are qk− 4(k− 1) edges with endpoints of degree 2. So, we have the result. ⊓⊔

Theorem 9 The ESO index of the graph Sq,1,k is:

ESO(Sq,1,k) = (8qk + 8k − 48)
√
2 + 48k

√
5.

Proof There are k − 2 edges with endpoints of degree 4. Also there are 2k
edges with endpoints of degree 4 and 2, and there are qk − 3k + 2 edges with
endpoints of degree 2. Therefore we have the result. ⊓⊔

Cactus graphs were first known as Husimi tree, are a class of simple linear
polymers. They appeared in the scientific literature some sixty years ago in
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Fig. 8 Chain triangular cactus Tn and para-chain square cactus Qn
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Fig. 9 Para-chain square cactus On and ortho-chain graph Oh
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Fig. 10 Para-chain Ln and Meta-chain Mn

papers by Husimi and Riddell [18,20,24]. For some aspects of parameters of
cactus graphs, refer to [4,22,25] .

As an immediate result of Theorems 8 and 9 we have the following results
for cactus chains:

Corollary 1 (i) If Tn is the chain triangular graph (see Figure 8) of order n,
then for every n ≥ 2, ESO(Tn) = (32n− 48)

√
2 + 32n

√
5.

(ii) If Qn is the para-chain square cactus graph (see Figure 8) of order n, then
for every n ≥ 2, ESO(Qn) = 32

√
2 + (48n− 48)

√
5.

(iii) If On is the para-chain square cactus (see Figure 9) graph of order n, then
for every n ≥ 2, ESO(On) = (40n− 48)

√
2 + 24n

√
5.

(iv) If Oh
n is the Ortho-chain graph (see Figure 9) of order n, then for every

n ≥ 2, ESO(Oh
n) = (56n− 48)

√
2 + 24n

√
5.

(v) If Ln is the para-chain hexagonal cactus graph (see Figure 10) of order n,
then for every n ≥ 2, ESO(Ln) = (16n+ 32)

√
2 + (48n− 48)

√
5.

(vi) If Mn is the Meta-chain hexagonal cactus graph (see Figure 10) of order
n, then for every n ≥ 2, ESO(Mn) = (16n+ 32)

√
2 + (48n− 48)

√
5.
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Fig. 12 Graphs G1, G2 and G3

3.2 Polyphenylenes

Similar to the definition of the spiro-chain Sq,h,k, we can define the graph
Lq,h,k as the link of k cycles Cq in which the distance between the two contact
vertices in the same cycle is h (see L6,2,4 in Figure 11).

Theorem 10 The ESO index of the graph Lq,h,k, for h ≥ 2 is:

ESO(Lq,h,k) = (8qk − 14k + 14)
√
2 + (20k − 20)

√
13.

Proof There are k−1 edges with endpoints of degree 3. Also there are 4(k−1)
edges with endpoints of degree 3 and 2, and there are qk−4(k−1) edges with
endpoints of degree 2. Therefore we have the result. ⊓⊔

Theorem 11 The ESO index of the graph Lq,1,k is:

ESO(Lq,1,k) = (8qk + 12k − 38)
√
2 + 10k

√
13.

Proof There are 2k − 3 edges with endpoints of degree 3. Also there are 2k
edges with endpoints of degree 3 and 2, and there are qk − 3k + 2 edges with
endpoints of degree 2. Therefore we have the result. ⊓⊔

3.3 Triangulanes

We want to obtain the elliptic Sombor index of the triangulane Tk defined
pictorially in [21]. The triangulane Tk is defined recursively in a manner that
is useful in our approach. First define recursively an auxiliary family of trian-
gulanes Gk (k ≥ 1). Let G1 be a triangle and denote one of its vertices by y1.
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Fig. 13 Graphs T3

Define Gk (k ≥ 2) as the circuit of the graphs Gk−1, Gk−1, and K1 and denote
by yk the vertex where K1 has been placed. The graphs G1, G2 and G3 are
shown in Figure 12.

Theorem 12 The ESO index of the graph Tk (see T3 in Figure 13) is:

ESO(Tk) =
(
288(2k−1 − 1) + 24(2k−1) + 96

)√
2 + 36(2k)

√
5.

Proof By recursive structure of the graph Tk, observe that there are 3 +
3
∑k−2

n=0 3(2
n) edges with endpoints of degree 4. Also there are 3(2k) edges

with endpoints of degree 4 and 2, and there are 3(2k−1) edges with endpoints
of degree 2. Therefore

ESO(Tk) = (3 + 9

k−2∑
n=0

2n)(8)
√
16 + 16 + 3(2k)(6)

√
16 + 4 + 3(2k−1)(4)

√
4 + 4,

and so we have the result. ⊓⊔

3.4 Nanostar dendrimers

In this subsection, we want to compute the elliptic Sombor index of the nanos-
tar dendrimer Dk defined in [3]. In order to define Dk, we follow [9]. First we
define recursively an auxiliary family of rooted dendrimers Gk (k ≥ 1). We
need a fixed graph F defined in Figure 14, we consider one of its endpoint to
be the root of F .

The graph G1 is defined in Figure 14, the leaf being its root. Now we define
Gk (k ≥ 2) the bouquet of the following three graphs: Gk−1, Gk−1, and F with
respect to their roots; the root of Gk is taken to be its unique leaf (see G2 and
G3 in Figure 15). Finally, we define Dk (k ≥ 1) as the bouquet of three copies
of Gk with respect to their roots (D2 is shown in Figure 16, where the circles
represent hexagons).
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Fig. 14 Graphs F and G1, respectively.

Fig. 15 Graphs G2 and G3, respectively.
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Fig. 16 Nanostar D2 and D3[2], respectively.

Theorem 13 The ESO index of the dendrimer D3[n] (see D3[2] in Figure
16) is:

ESO(D3[n]) = (468× 2n + 204)
√
2 + (90× 2n + 30)

√
13.
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Proof There are 3 + 9

n−1∑
k=0

2k edges with endpoints of degree 3. Also there are

6+18

n−1∑
k=0

2k edges with endpoints of degree 3 and 2, and there are 12+18

n−1∑
k=0

2k

edges with endpoints of degree 2. Therefore

ESO(D3[n]) = (3 + 9

n−1∑
k=0

2k)(6)
√
9 + 9 + (6 + 18

n−1∑
k=0

2k)(5)
√
9 + 4

+ (12 + 18

n−1∑
k=0

2k)(4)
√
4 + 4,

and we have the result. ⊓⊔
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