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Abstract In this paper, an iterative method of successive approximations
based on the trapezoidal quadrature rule to solve two-dimensional Fredholm
integral equations of second kind (2DFIE) is proposed. The error estimation
of the proposed method is presented. The benefit of the method is that we do
not have to solve a system of algebraic equations. Finally, a numerical example
verify the theoretical results and show the accuracy of the method.
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1 Introduction

The integral equations provide important tools for modeling a wide range of
phenomena and processes [14], and many problems in engineering and physics
give rise to two-dimensional integral equations [16,13,8]. There are many nu-
merical methods for solving integral equations. The Galerkin and collocation
methods are two commonly used methods for the numerical solutions of these
equations [9,10]. Several numerical methods for approximating the solutions of
integral equations were presented. Here, we recall some published works on this
subject. These include Gauss product quadrature rule [6], polynomial interpo-
lation methods [24], discrete Galerkin and iterated discrete Galerkin methods
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[12], triangular functions method [15], Legender polynomial method [22], Nys-
trom method [11], meshless method [1], Haar wavelet method [4]. Analytic
methods, analytic-numeric methods like Adomian decomposition, homotopy
perturbation method and regularization-homotopy method have been studied
by many authors [17]. The use of successive approximations method in such
cases can be therefore useful [18-20]. In this paper, we introduce an iterative
method based on 2D trapezoidal quadrature rule for solving 2DFIE as

d b
F(s,t) = f(s,t) + )\/ / K(s,t,x,y)F(z,y)dxdy,

where (s,t) € 2 = [a,b] x [c,d] and f(s,t), K(s,t,2,y) are the given analytical
functions. In the most of numerical methods, the integral equation is trans-
formed into a system of linear or nonlinear algebraic equations which has to
be solved with iterative methods. It is cumbersome to solve these systems, or
the solution may be unreliable. The proposed method does not lead to a non-
linear algebraic equations system. This is a great advantage of this method.
The rest of the paper is organizied as follows: we begin by introducing some
necessary definitions and mathematical preliminaries of the some quadrature
rules for 2-D integral in Section 2. Section 3, devoted to prove of the exis-
tence and uniqueness of the solution of 2DFIE by the method of successive
approximations. Also, a conclusion is given in Section 4.

2 Preliminaries

Definition 1 Suppose that f : 2 — R, be a bounded mapping, then the
function wgo(f,.) : RY U0 — RT defined by

wa(f,6) = sup  {[f(z,y) — fls. ) V(@ —8)2 + (y — )2 <6}, (1)

x,s€[a,bl;y,te€(c,d]

is called the modulus of oscillation of f on f2.
Also, if f € C’(Q) (i.e. f: 2 — R is continuous on {2, then wq(f,d) is called
uniform modulus of continuity of f.

Theorem 1 The following properties holds [23]:

(1) |f(z,y) = f(5.0)] < Wpapixiea(fs /(@ —5)2 + (y —1)?) for all z,s € [a,b]
and y,t € [c,d],

(i) wn(f,0) is an non-decreasing mapping in o,

(iit) wa(f,0) =

(iv) wo(f,61+82) <wn(f,d1)+wal(f,d2) for any §1,02 > 0,
(v) wo(f,nd) <nwao(f,d) for any § >0 and n € N,

(vi) wa(f,A0) < (A4 1)wia,p)x[e,a) (f; ) for any 6, A >0,
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(U”) If [a‘7b] X [C, d] - [evf] X [gah]a then W[a,b]x[c,d](f7 5) < Wle, f1x[g,h] (fv 5) fO’f’
all § > 0.

Theorem 2 [21] Let f : [¢c,d] X [¢,d] — R, be a integrable, bounded mappings.
Then, for any divisions

a=xg<x1<--<xp=0",

and
c=yo<y1 <<y, =d,

and any points & € [x;—1,x;] and n; € [y;—1,y;] we have

//fstdsdt ZZ i = xim1)(yy — yi—1)f (&)

j=11:=1
n n
SZZ i — i) (Y5 — Yj-1)
j=11i=1

x w[zi—lvxi]x[yj—l,yj](f’ \/(xZ - xi*1)2 + (yj - yjfl)z)'

Corollary 1 Assume that f : [a,b] X [c,d] — R, be a integrable, bounded
mapping. Then with the following notation

Wryxzt = Wiz,y]x[z,t] (fv \/( )2+(t72)2) )

we have
‘ / / fls,t)dsdi - [W‘ —a)(y = )f(w,0) + (¢ — a)(d = y)f(u, §)

+O=a)(d=)f(e) + (0 2)d - )f(w5)]|
S (.17 — a)(y — C)WQIXCZI + (b - x)(y - C)wszcy + (.’17 - a)(d - y)wawxyd
+ (b_x)(d_y)wxbxym

For all x € [a,b], y € [¢,d], u € [a,z], v € [z,b], a € [¢,y], and B € [y,d].

Proof Taking in the previous theorem n =2, 21 =& =& =z,and y3 =m =
72 = y we obtain the required inequality.

Corollary 2 Let f : [a,b] X [e,d] — R, be a two dimensional integrable,
bounded mapping. Then the following inequalities holds:

/d/bf(s,t)dsdt —(b—a)(d—c)f(a;rb,cgd)

< (0= ) - otanpeiea (1 LD )

Proof If we take x = “T“’ and y = C;d
inequality.

(1), we obtain the required
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3 Existence and uniqueness of Fredholm integral equations

Here, we consider the two dimensional Fredholm integral equations as follows:

d b
ﬂaﬂzf@ﬂ+k/i/lﬁ&aLwF@wMM% (2)

where A > 0, K(s,t,,y) is an arbitrary kernel on 22 and f : 2 — R. We
assume that K is continuous and therefore it is uniformly continuous with
respect to (s,t). This property implies that there exists M > 0 such that

M = max |K(s,t,x .
a<s,z<b ( » by 7y)
c<t,y<d

Now, we shall prove the existence and uniqueness of the solution of equation
(2) by the method of successive approximations.

Let X = {f : 2 — R;f is continuous} be the space of two dimensional
continuous functions with the metric

17 =gl = sup |£(s.t) = gs.1)]. (3)
PSE

We define the operator A : X — X by

d b
A(F)(s,t) = f(s,t)+)\/ / K(s,t,x,y)F(x,y)dxdy, V(s,t) € 2, VfeX.
(4)

Sufficient conditions for the existence of an unique solution of equation (2) are
given in the following result.

Theorem 3 Let K(s,t,x,y) be continuous for a < s, x < b, ¢ <t, y <d,
and f: 2 = R be continuous on [a,b] X [¢,d]. If A= AM(b—a)(d—c) <1,
then the iterative procedure

F0(57t):f(37t)7 (5)

d b
F(s,t) = f(s,t) + )\/ / K(s,t,x,y)Fm-1(z,y)dzdy, m>1 (6)

converges to the unique solution F* of equation (2). Moreover, the following
error bound holds:

Am+1
* < -
1F* = Full < T— I, (7)

where

. (8)

[fll = sup [f(s,?)
a<s<b
c<t<d
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Proof To proof this theorem we investigate the conditions of the Banach’s
fixed point principle. We first show that A maps X into X (i.e. A(X) C X).
To the end, we show that the operator A is uniformly continuous. Since f is
continuous on compact set of {2, we deduce that it is uniformly continuous
and hence for ; > 0 exists §; > 0 such that

|f(sl,t1) - f(SQ,t2)| < &1 whenever /(ta —t1)2 + (s2 — 51)2 < 61,

for all s1, 89 € [a,b] and t1,t5 € [c,d]. As mentioned above, K also is uniformly
continuous thus, for g5 > 0 exists do > 0 such that

|K(s1,t1,2,y) — K(s2,t2,2,y)| < ez whenever V(s —11)2 + (s9 — 51)2 < 02,

Let § = min{d1, 02} and \/(t2 — t1)2 + (s2 — 51)2 < 8. We obtain
[(A(F)(s1,t1) — A(F)(827t2)| < ‘f(Sl,tl) - f(32>t2)‘
+Adf
S a
<ep +)\62/ / |F(z,y)|dedy
<o+ b a)d— )Pl

K(317t17x7y) - K(Sg,tg,l‘,y) |F($7y)|d$dy

where

[F|| = sup [F(z,y)|.
a<x<b
e<y<d

By choosing e1 = § and €3 = ma we derive

’A(F)(Sl,tl) — A(F)(Sg,t2)| S e.

This shows that A(F) is uniformly continuous for any F € X, and so contin-
uous on {2, and hence A(X) C X.

Now, we prove that the operator A is contraction map. So, for Hy, Hy € X
and s € [a,b] and t € [¢,d], we have

d b
|A(H1)(s,t)—A(H2)(5,t)| §/\4K(s,t,:c,y)|/ / |H1(x,y)fH2(x,y)|dxdy
d b

<M [ [ |ty) - Halo,y)|dody

d rb
g)\M/ / | Hy — Ha||dxdy

=AM (b~ a)(d - )| Hy — H|
= Al Hy - Hy.

Therefore, we obtain

|A(H1)(s,t) = A(Hs)(s,t)|| < A||H1 — Ha||.
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Since A < 1, the operator A is a contraction. Consequently, the Banach’s fixed
point principle implies that equation (2) has a unique solution F* in X and
we also have

|[F*(s,t) — Fu(s,t)| < || F* = Fi||
= A" = |
< A||F* — Fll + Al Frn—1 — Fll
SA|F = Fpl| + A™ || Fo — Fi .

Therefore,
|F* = Bl < 2 IR - R, )
1-4A
on the other hand,
||F07F1||fsup |fst //KstzyFoxyd:cdy|
(cl<t<d
d b
< sup /\/ / |K (s, t, 2, y)Fo(a,y)|dedy
a<s<b c Ja
c<t<d
<M/\/ / sup |F0(m,y)|dxdy
a a<s§bc§t§d
= AM(b = ollfll = Il f[lA. (10)

So, by (9) and (10) we obtain inequality (7), which completes the proof.

Now, we introduce a numerical method to solve equation (2). we consider
equation (2) with continuous kernel K (s, ¢, z,y) having positive sign on 2 x {2
and uniform partitions

D,:a=5<58 <8< <8,_1<8,=b,
Dy:ic=ty<t1 <ta<- -+ <tph_1 <ty =d,

with s; = a +ih, t; = ¢+ jh/, where h = Z’_T“, h = %. Then the following
iterative procedure gives the approximate solution of equation (2) in point

(s,1),
u0(57t) = f(S,t)

)\hh/n In—1
um(s,t) = f(s

< Sty 85, b ) Um—1(8i,t5)

1=0 j=0
+K(S t Szat]Jrl)um 1(517 j+1)+ K(S t 87,+17t )um 1(87,+17t )

+ K<57ta5i+17tj+1)um1(3i+17tj+1)>- (11)
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3.1 Error estimation

Here, we obtain an error estimate between the exact solution and the approx-
imate solution for the given Fredholm integral equation (2).

Theorem 4 Consider the equation (2) with continuous kernel K(s,t,z,y) on
2 x 2 and suppose that f is continuous on 2. If A < 1 | then the iterative
procedure (11) converges to the unique solution of equation (2), F*, and the
following error estimate holds true,

. Am+1 A ,
15 =l = (Wl (g ) tasieean (010

,u/l2 +4’7’A ’
——— Jwst (K h+ ),
+ (4M(1 _A))w(t< +h)
where
wst(K75) = sup {|K(817t1,.’£,y)—K(827t2,$7y)|;
s1,82€[a,b]
tl,tz[c,d]
Viss =517+ (6 — )2 <6,
and
My, = sup |ug(s,t)l,
(s,t)e
I'y = sup |Fi(s,t)],
(s,t)EN (12)
= izo,rf[,l.?(mq{Mi}’
= 1:0,?,1.?{771—2{Fi}'

Proof Considering iterative procedure (11), we obtain

n—1ln—1 Sit1 tit1
|F1(87t)_u1(svt){ SAZZ / / K(s,tw,y)f(x,y)dﬁcdy
i=0 j=01Ysi tj
_

4 [K(Sat7x7y)f(sl7t]) + K(S’taxay)f(siatj-‘rl)

+ K(Satvmay)f(8i+l7tj) + K(Satvx7y)f(si+lvtj+l)}

n—1n—1

FAY Y

i=0 j=0
+ K(55t7xvy)f(5i+17tj) + K(S,t7$,y)f(5i+17tj+1)}

hh'
- 4 [K(Sat7siatj)f(si7tj)) + K(Satasivtj+1)f(5iatj+l

+ K(s,t,8i41,t5) f(siv1,15) + K(s,t, 841, t541) (8415 541

hh'
T [K(S’ta xvy)f(8i7tj) + K(57t7 xz, y)f(3i7tj+1)
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n—1n—1
<A Y
1=0 j=0
hh'
- T[K(S7t7xay)f(3i7tj) + K(S7tvxay)f(3i7tj+1)

+ K(s,t,2,y) f(siv1,ty) + K(s,t,2,9) f(siy1, 1)

si+1 i1
/ K(s,t,z,y)f(z,y)dvdy

n—1ln—1
+AZZ S t,l’,y)f(Si,tj)+K(S,t,l’,y)f(5i,tj+1)
=0 j=0
K(sat7z7y)f(si+latj) + K(Svta I7y)f($i+1atj+l)]
hh'

e (K (s,t,8i,t5) f(si,t5) + K(s,t, 85, t5401) f (51, t541)

+ K(s,t,8i41,15) f(si41,15) + K (5,8, 841, t541) F(8ig1, )] '

n—1n—1 it1 J+1
<)\MZZ|/ / f(z,y)dzdy
=0 j=0 Si

/

_%[f(sw tj) + f(sistjen) + fsia,t )+f(31+17tg+1)]‘

_"_
yn—1n—1
NS HK st y) (s ty) = K (s, 5008 F(sity)

1=0 j5=0

+ |K (s, t,2,y) f(sistjr1) — K(s,t,85,t501) f(si,t541)

+ K(S7taxay)f(5i+17tj) - K(57t75i+17tj)f(si+1atj)

|

+ K (s, t,2,y) f(siv1,tj41) — K (8,8, Si1stj1) f(Si1, ti1)

Using Corollary 2 and part (vii) of Theorem 1 we deduce

)\Mhh/ n—1n—1
|F1(Sat) _u1(57t)’ ZZ 4(.0 S“Sl+1]><[tj,tj+1](f7 ))
1=0 j5=0
n—1n—1
)\hh/ Z{’Kstazy K(s,t,5i,t; Hfsl, |

=0 j=0
+ |K(S,t7l",y) — K(s,t, 5, ti11)|| f (50 tj41)]
+|K(Sat7xay)7K(Sata5i+1atj)|’f(5i+latj)|

+ | K (s, t,2,y) — K(s,t, si1,t501) || f(sir1ti1)| |-
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By part (i4) of Theorem 1 and direct computation, it follows that

AM(b—a)(d—c)
4

n—1ln—1

|Fi(s,t) — un(s, )] < w(f, k')

+ )‘hh/ Z Z (|K(s,t,x,y) - K(Sat7siatj)|)||f(sﬂt)”

i=0 j=0
< AM (b —Z)(d - C)w(f, hi)

+ Ab—a)(d — c)Mows (K, h + k')

A A
= Zw(ﬁ hh') + MMOwSt(K, h+1),

therefore we obtain

’Fl(s,t) - ul(s,t)‘ <

=]

w(f,hh') + %Mowst(K, h+1).

Now, we have

AM(b—a)(d—c)

|F2(87t) — uQ(s,t)| <

7] Wia,b]x[e,d) (F1, hR')
AM(b—a)(d —
( Z)( J [|F1(5iatj)ul(5i,tj)|

(13)

+ [ Fu(si tygn) = ua(sis tyen)| + |Fa(sipr, ty) — ua(sia, ty)]

+ |F1(5i+17 tit1) — u1(Sit1,tj41) |]

+ A(b—a)(d—c)Miws (K, h+ h').

Therefore,

A
|Fa(s,t) — ua(s, t)] < Zw[a,b]x[c,d](Flahh,) + [|F1(3iatj) —uy(s;, t5)|

A
1

+ | Fu(sistjrn) — ua(sistjpr)| + [ Fi(sivns ty) — ua(si1, t5)]

+ | Fu(sipr, tj41) — u1(5i+17tj+1)|)}

+ A(b—a)(d — c)Myws (K, h + h').
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By induction for m > 3, using (5), (6), (7), (11), and (12), we see that
A
|Fn(s,t) — um(s, )] < 7 Wlabixle.d (Frn—1,hh')
A
+ 1 ’Fm—1(8i,t]’) - Um—1(8i,t]’)’

+ |Fm71(si7tj+1) - Umfl(siatj+1)|

+ | Frn-1(Sig1,t5) = Um—1(si41,t5)

+ | Fn—1 (i1, tj41) — tm—1(Si41,tj41)]
A /
My (K R 1), (14)

Taking supremum for (¢,s) € {2 from (14) we conclude that the following
inequalites hold

A
HFm - umH SZw[a,b]x[c,d] (mela hh/) + AHmel - umle

A
+ MMm—lwst(K7 h + h/)a

A
Hmel - um71|| SZw[a,b]X[c,d] (Fm727 hh/) + A||Fm72 - um72H

A
+ MMm—Qwst (K7 h+ h,),

A
| Frn—2 — Um—2| S Wlablxled) (Frn—g, hb') + A||Fpr—3 — tm—s|

A
+ MMm—Swst(Ka h + h/)a

A
| F1 — | SZW[a,b]x[c,d](thh')
A By — o] + - Moo (I, 1+ 1),

multiplying the above inequalities by 1, A, A2, ..., A™~ 1 respectively and sum-
ming them we obtain

A
| Fon — um || < 1 <w[a,b]x[c,d] (Fr—1,hh')
+ Awio pyxe,dq) (Fm—2, hh') + - 4+ A™  wpg e ( hh'))

+ %wst(K, h+H) (Mm1 T+ AMyy_o + A2Myy_g + - + Am—lMO)
(15)
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Since, for (s1,t1), (s2,t2) € £2 with |s1 — s3| < h, [t1 — ta] < B/, we have

d b
| Fon(51,61) — Fon(s2, t2)] = ’f<sl,t1>+A / / K(s1,t1,2,y) Fos (2, y)dady

d b
= Flsarta) + A / / K (52, t2, 2, y) Fon1 (2, y)ddy
A ,
S ’f(slatl) - f(823t2)’ + Mwst(Kyh + h )mela

therefore, we infer

A
Wiab)x[eyd] (Fmy BR) < Wia ) x[e,a) (fs hh') + Mwst(Kv h+h) 1. (16)

By this inequality and (15), we see that

A
1Fm — ]| < (1 A+ A4+ Aml)w[a,b]x[c,d](fa hh')

A
+ WWSt(K’ h + h’/) (AF’H'L—2 + AQFm_S + .. + Am—lpo)

A
+ Mwst(K, h+ hl) <Mml + AM,,_o + AQMm—S 4o+ Am_lMQ)

A/1— AT
4 (1—A>°"[a7b1x[c,d] (f, hh")

A
+ mwst(K, h + h/) |:(AFm—2 + A2Fm—3

o+ AT ) + A( Moy + AMyy_g + AP Mg + - + AT”1MO)} .

By (12) since A < 1 we obtain

Af1—Am
1 =l < (= )ttt )

AL —A™) 41— Am)7>

-4 "t 1o

A
+ mwst(K, h + h/)(

A
)(JJ[a,b]X[c,d] (f, hh/) + 7wst(K, h+ h/) <

< A pA+4r
SAi-4 M '

1—4A
Therefore, we obtain

A puA? +47A
— < | — / = /.
HFm UmH_ <4(1A)>w[a,b]><[c,d]<f7hh)+ <4M(1A)>w3t(K7h+h)
(17)
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By inequalities (17) and (7) we deduce that

[E™ = || < |[F™ = Epnl + [[Fn — ]|

Am+1 A /
< (1 _ A) 11+ (4(1/1)>w[a,b]x[c,d](f, hh')

puA? + 41 A
4M(1 — A)

)wst(K, h + h,/)
Remark 1 Since A < 1, it is easy to see that

Jim [P =0,
h,h'—0

that shows the convergence of the method.

Ezample 1 Consider the following two dimensional Fredholm integral equation

1,1
F(s,t) = f(s,t) +/ / K(s,t,z,y)F(z,y)dzdy, (18)
o Jo
where
.t )
f(s,t)zssm§, K(s,t,x,y) = s“tz,

with the exact solution

t 16 1
F(s,t) = ssin = — —(cos = — 1)s°t.
2 21 2

By using the proposed method, we can present the approximate solution for

this example. To compare the numerical results with the exact solution for
different values of m, n, see Table 1 .

Table 1 Numerical results of Example 1.

m=3,n=10 m=3n=50 m=6,n=10 m=6,n=>50

(s,t) Exact |F — um| |F — um| |F — Um| |F — um|
(0.2,0.2) 0.0207  4.456 x10~7  3.016 x10~10 2362 x10~7  2.092 x10~ 10
(0.4,0.4) 0.0854  3.565 x10~6 2.500 x107° 1.889 x10~6 1.674 x10~°
(0.6,0.6) 0.1974  1.203 x10~° 1.916 x10~8 1.015 x10~° 1.248 x10~8
(0.8,0.8) 0.3593  2.852 x107° 2.811 x1078 2.111 x1073 2.339 x10—8
(1.0,1.0)  0.5727  6.570 x10~° 3.299 x10—8 4.252 x1075 3.014 x10—8
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4 Conclusions

To approximate the solution of 2DFIE of Fredholm type, we used an efficient
iterative algorithm, based on the method of successive approximations. In the
present paper, using an iterative method based on 2D Trapezoidal quadrature
rule we have approximated the numerical solution of two-dimensional Fred-
holm integral equations. We established the theorem of existence of unique
solution of these equations, and we have proved it by using Banach’s fixed
point principle. Moreover, the proof of convergence of quadrature formula is
discussed in Theorem 4.
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