In the present article, we define the concept of isoclinism for n-Hom-Lie algebras and investigate some of its properties. Also, we introduce the factor sets on n-Hom-Lie algebras. As a result, it is shown that the equivalency between isoclinism and isomorphism of two finite- dimensional n-Hom-Lie algebras just depends on whether one of them be regular.
Sadeghloo, M., & Alizadeh, M. (2022). Isoclinisms in n-Hom-Lie Algebras. Global Analysis and Discrete Mathematics, 7(2), 193-208. doi: 10.22128/gadm.2022.629.1083
MLA
Mina Sadeghloo; Mahboubeh Alizadeh. "Isoclinisms in n-Hom-Lie Algebras". Global Analysis and Discrete Mathematics, 7, 2, 2022, 193-208. doi: 10.22128/gadm.2022.629.1083
HARVARD
Sadeghloo, M., Alizadeh, M. (2022). 'Isoclinisms in n-Hom-Lie Algebras', Global Analysis and Discrete Mathematics, 7(2), pp. 193-208. doi: 10.22128/gadm.2022.629.1083
VANCOUVER
Sadeghloo, M., Alizadeh, M. Isoclinisms in n-Hom-Lie Algebras. Global Analysis and Discrete Mathematics, 2022; 7(2): 193-208. doi: 10.22128/gadm.2022.629.1083