Isoclinisms in n-Hom-Lie Algebras

Document Type : Research Paper

Authors

Mathematical Institute, Golestan University, Gorgan, Iran.

Abstract

In the present article, we define the concept of isoclinism for n-Hom-Lie algebras and investigate some of its properties. Also, we introduce the factor sets on n-Hom-Lie algebras. As a result, it is shown that the equivalency between isoclinism and isomorphism of two finite- dimensional n-Hom-Lie algebras just depends on whether one of them be regular.

Keywords


1. F. Ammar, Z. Ejbehi, A. Makhlouf, Cohomology and deformations of Hom-algebras, J. Lie Theory, 21, 813–836 (2011).
2. J. Arnlind, A. Makhlouf, S. Silvestrov, Construction of n-Lie algebras and n-ary Hom- Nambu-Lie Algebras, J. Math. Phys., 52, 123502 (2011).
3. H. Ataguema, A. Makhlouf, S. Silvestrov, Generalization of n-ary nambu algebras and beyond, J. Math. Phys., 50, (2009).
4. P. Batten, E. Stitzinger, On covers of Lie algebras, Comm. Algebra, 24, 4301–4317 (1996).
5. J. M. Casas, X. Garcia-Martinez, Abelian extensions and crossed modules of Hom-Lie algebas, J. Pure Appl. Algebra, 224, 987–1008 (2020).
6. J. M. Casas, X. Garcia-Martinez, On the capability of Hom-Lie algebas, arXiv: 2101.11522v1, (2021).
7. J. M. Casas, M.A.Insua, N. Pacheco, On universal central extensions of Hom-Lie alge- bras, Hacet. J. Math. Stat., 44, 277–288 (2015).
8. J. M. Casas, E. Khmaladze, N. P. Rego, A non-abelian tensor product of Hom-Lie algebras, Bulletin of the Malaysian mathematical science society, 40, 1035–1054 (2016).
9. Y. Cheng, Y. Su, (Co)homology and universal central extension of Hom-Leibniz algebras, Acta Math. Sin. (Engl. Ser.), 27, 813–830 (2011).
10. G. J. Ellis, A non-abelian tensor product of Lie algebras, Glasgow Math. Journal, 33, 101–120 (1991).
11. K. Erdmann, M. J. Wildon, Intrduction to Lie algebras, (2006).
12. M. Eshrati , M. R. R. Moghaddam , F. Saeedi, Some properties on Isoclinism in n-Lie algebras, Communications in Algebra, 44, 3005–3019 (2016).
13. V. T. Filippov, n-Lie algebras, Sib. Mat. Zh., 26, 126–140 (1987).
14. P. Hall, The classification of prime-power groups, J. Reine Angew. Math, 182, 130–141 (1940).
15. J. T. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using σ-derivation, Journal of Algebra, 695, 314–361 (2002).
16. Q. Jin, X. Li, Hom-Lie algebra structures on semi-simple Lie algebras, J. Algebra 319, 1398–1408 (2008).
17. N. S. Karamzadeh, S. N. Hosseini, A. R. Salemkar, The exterior product and homology of Hom-Lie algebras, arXiv preprint arXiv:2104.12767, (2021).
18. Y. E. Kharraf, Classification problem of simple Hom-Lie algebras, arXiv preprint arXiv:2101.11518 (2021).
19. K. Moneyhun, Isoclinisms in Lie algebras, Algebras, Groups and Geometries, 11, 9–22 (1994).
20. P. Niroomand, A Note on the Schur multiplier of a nilpotent Lie algebra, Communications in Algebra, 39, 1293–1297 (2011).
21. P. Niroomand, On the tensor square of non-abelian nilpotent finite dimensional Lie algebras, Linear and Multilinear Algebra, 831–836 (2011).
22. R. N. Padhan, N. Nandi, K. C Pati, Some properties of factor set in regular Hom-Lie algebras, arXiv e-prints (2020), arXiv-2005.
23. F. Parvaneh, M. R. R. Moghaddam, Some properties of n-isoclinism in Lie algebras, Italian J. Pure Appl. Math., 28, 165–176 (2011).
24. A. Salemkar, F. Mirzaei, Characterizing n-isoclinism classes of Lie algebras, Communications in Algebra, 38, 3396–3403 (2010).
25. Y. Sheng, Representations of Hom-Lie algebras, Algebra Represent. Theory, 15, 1081–1098 (2012).
26. L. Song, R. Tang, Cohomologies, deformations and extensions of n-Hom-Lie algebras, Journal of Geometry and Physics, 141, 65–78 (2019).
27. D. Yau, Hom-algebras and homology, J. Lie Theorey, 19, 409–421 (2009).
28. D. Yau, The Hom-Yang-Baxter equation, Hom-Lie algebras and quasi-triangular bialgebras, J. Phys. A, 42, 165202 (12pp) (2009).
29. D. Yau, The Hom-Yang-Baxter equation and Hom-Lie algebras, arXiv:0905.1887.